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Abstract
Certifying machine learning systems has become more and more important, especially when they are deployed
in safety critical domains. In this paper, we sum up the work in [1] that combines Deep Learning with Formal
Methods for the automated synthesis of certified neural networks and we discuss current open research lines.
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1. Introduction

Applications of neural networks include fields where they act as action advisors and controllers for
safety-critical systems, where safety is paramount, and errors can be extremely expensive or dangerous.
When a neural network is deployed in a safety-critical system, it is of extreme importance to prove
that it satisfies the desired properties in all possible scenarios and under all possible inputs. Formal
verification provides algorithms and methodologies that can exhaustively explore the state space of a
system to guarantee that the system itself respects the desired properties, and it is routinely applied
in the design of hardware and software systems. More recently, the challenge of the certification of
neural networks has received attention from the formal verification community: the annual competition
VNN-COMP [2] and the standard format VNN-LIB [3] have been established to compare state-of-the-art
neural network verification tools and share benchmarks and test cases. The interest by the industry
is testified by the recent discussion on the use of formal methods for neural networks certification in
aviation [4], and by legislative texts such as the AI act by the European Union [5], that will require for
all AI systems categorized as high-risk to be assessed before being deployed.

Many of the current approaches to verify a neural network reduce the problem to finding a solution
to a constraint satisfaction problem (CSP). Such a CSP consists of a set of constraints encoding the
neural network and a set of constraints encoding the property, and it is typically formulated within the
frameworks of Mixed Integer Linear Programming (MILP), Satisfiability Modulo Theories (SMT), or
more generally Constraint Programming (CP). Some selected references of these (and other) formal
verification methods can be found in [6]. Some tools such as RELUPLEX [7] and Marabou [8] provide
specialized versions of the SIMPLEX method to boost scalability of the formal verification phase.

However, verification alone can only give a yes or no answer and cannot synthesize a neural network
that is guaranteed to respect the property when the answer to the verification problem is negative.

A few attempts in the literature to deal with the synthesis of certified neural networks have been
provided. Some of them are restricted to general monotonicity of the network [9, 10], whereas others
are limited to constraining the output for Hierarchical Multi-label classification Problems (e.g., [11, 12]).
Considering more general rules, some works [13, 14, 15, 16] propose to inject constraints in the loss
function of a neural network in such a way that the training of the model should prefer solutions where
the constraints are satisfied. [17] generates counterexamples (solving an optimization problem) that
violate some constraints that are expressed in first-order logic (FOL) and include them in the training set
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in NLP tasks. [18] expresses constraints as logical clauses directly incorporated in the network structure
as an additional layer that adds trainable parameters (clause weights) that represent the satisfiability
level of constraints, providing explainability to the model as well as increased generalization. Some
other methods additionally provide guarantees on the considered constraints, even though they either
pose limitations on the constraints [19, 15], or rely on an external component to enforce the desired
properties at run time [20, 21]. Finally, a recent review of deep learning with logical constraints is
provided in [22].

The problem of automatically generating a computational system that provably satisfies a given
high-level specification has been studied in computer since the seminal works of Church [23]. One
relevant methodology developed by this line of research is the Counter Example Guided Inductive
Synthesis (CEGIS) workflow, initially proposed in [24] for the automated synthesis of programs. The
CEGIS workflow has been recently applied to prove stability of neural controllers [25, 26] and to
generate invariants for dynamical systems [27, 28]. While these works exploit a learning-verify loop
similar to our approach, they start from an analytical description of the dynamical system, and they
consider only the problem of learning a network that satisfies the desired properties. A framework that
is closer to our methodology is described in [29], where the CEGIS loop maintains a list of points on
which the network is known to produce a faulty result, and then finds a modification to the weights of
the network that simultaneously corrects all of these points. The loop is repeated until the network
is verified. While this work aims to minimize the changes needed to certify the network, as we do,
it restricts itself to change only the last layer of the network in the modification phase, due to the
computational complexity of the underlying optimization problem. In our setting we start from a dataset
sampled from an unknown distribution, and we aim to preserve the accuracy of the network as much
as possible, without adding arbitrary restriction on how we modify the network. To do so, we develop a
data generation technique to augment the training data that turns out to be crucial to keep the final
network as close as possible to the one trained on the unknown data-generating distribution.

2. Certification of ReLU Neural Networks

The work in [1] targets feed-forward neural networks with rectified linear unit activation functions
(ReLU). The employed framework used to certify such neural networks is based on the Counter Example
Guided Inductive Synthesis (CEGIS) loop shown in Figure 1, a framework that was historically introduced
in [24] for the automated synthesis of programs. In general, CEGIS works by generating a candidate
solution to the problem at hand (a program in [24], a neural network in our case) and then formally
verifying whether the candidate solution respects the desired properties or not. If not, the formal
verification phase generates one or more counterexamples that are used to generate a new, better,
solution, until the candidate solution is proved to respect the required properties.

To encode neural networks we relied on a straightforward encoding into linear real arithmetic
(LRA), a fragment of first order logic that consists of arbitrary quantified boolean formulae on linear
constraints. Given a neural network 𝑁 with 𝑛 inputs represented as the vector x = (𝑥1, . . . , 𝑥𝑛),
and 𝑚 outputs represented as the vector y = (𝑦1, . . . , 𝑦𝑚), the encoding builds a formula 𝐹𝑁 (x,y),
where 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚 are the only free variables, and such that 𝐹𝑁 (x,y) is true if and only if
y = 𝑁(x).

To encode the properties we considered a fragment of LRA in which each formula has the following
form:

𝐹pre(x) ⇒ 𝐹post(x,y),

where 𝐹pre(x) is a quantifier-free LRA formula over input variables only, and 𝐹post(x,y) is a quantifier-
free LRA formula over both input and output variables. Clearly, a neural network 𝑁 is certified for a
property 𝑃 := 𝐹pre(x) ⇒ 𝐹post(x,y) if the formula

𝐹𝑁,𝑃 (x,y) := (𝐹𝑁 (x,y) ∧ 𝐹pre(x)) ⇒ 𝐹post(x,y)
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Figure 1: High level view of the CEGIS workflow employed for the synthesis of certified neural networks.

is valid1. This is the check that the formal verification phase in Figure 1 does. As usual, a formula is
valid if and only if its negation is unsatisfiable. Hence, to check if 𝑁 is certified for a property 𝑃 , we
can equivalently check whether ¬𝐹𝑁,𝑃 (x,y) is unsatisfiable.

The output of the formal verification part can lead to two mutually-exclusive outcomes:

1. the CSP is unsatisfiable. In this case, no counterexample to 𝑃 exists and 𝑁 is certified for 𝑃 ;
2. the CSP is satisfiable. In this case there exists a counterexample (x, 𝑁(x)) such that

𝐹𝑁,𝑃 (x, 𝑁(x)) is false.

In the former case, the process is completed and we have proof that 𝑁 respects the property 𝑃 for all
possible values in the input domain, and not only for the inputs contained in the (finite) dataset.

We now proceed to explain how to use CEGIS for repairing a neural network 𝑁 in order to restore
satisfaction of a violated property 𝑃 . Let 𝑁 be a ReLU neural network and 𝑃 be a property on 𝑁 .
Suppose that ¬𝐹𝑁,𝑃 (x,y) is satisfiable. To correct the behavior of the network, we want to build a
pair (x,y′) such that 𝐹post(x,y

′) is true (notice that the inputs remain fixed as we can’t control them).
To do so, we start by building a new CSP, abstracted as an LRA formula 𝐹 ′

post built as a modification of
𝐹post where:

• each 𝑥 variable is replaced by its value assignment of the counterexample;
• each 𝑦 variable is replaced by its value assignment of the counterexample plus a fresh variable 𝑠.

The result of this substitution is a new quantifier free LRA formula on 𝑠 variables only (shifts that will
be used to move 𝑦 values in the counterexample to restore satisfiability of the property). If we solve the
set of constraints represented by 𝐹 ′

post with respect to the objective function that minimizes the sum
of squares of the various 𝑠, then we obtain a new value assignment (x,y′) that satisfies 𝐹𝑁,𝑃 (x,y),
where each 𝑦′ is equal to the value in the original counterexample plus the value of its related 𝑠 obtained
by solving the new CSP. This way we generate a new data point (x,y′) by selecting a y′ that is at
minimal distance from the original y and such that the property is respected. In fact, the purpose of the
minimization problem is to generate an example as close as possible to the original data distribution
while respecting property 𝑃 . The pair (x,y′) is thus added to the current dataset (along with some
other pairs sampled around and satisfying 𝑃 ), and a new iteration of the CEGIS loop starts.

In [1], we tested our framework to the MANNERS-DB example [30]. The case study involves a robot
moving in a room where humans and animals are present. The controller is implemented through a
neural network, where the outputs of the neural network provide numbers representing the adequacy
of the possible actions executable by the robot. Each adequacy is a score of 1 to 5, where the bigger the
number, the more adequate the action. The adequacy scores have been computed as the average across
human judgments obtained via crowdsourcing (see [30]). We considered the following two properties:

𝑃1: if the distance to the closest child is within 0.6 meters, then mopping the floor must be the less adequate
action;

𝑃2: if the distance to the closest human is within 0.6 meters, then the adequateness of mopping the floor
must be less than or equal to the adequateness of mopping the floor in all possible scenarios in which
the distance to the closest animal is within 0.6 meters.

1Note that the conjunct 𝐹𝑁 (x,y) added on the left of the implication serves to exclude all pairs (x,y) such that y ̸= 𝑁(x).



Notice that 𝑃2 compares multiple (input, output) pairs. To encode it we extended our property language
to consider two copies of the network 𝐹𝑁 (x,y)∧𝐹𝑁 (x′,y′) and allowing 𝐹pre and 𝐹post to be defined
on both x,y and x′,y′, simultaneously.

We implemented our approach in Python 3, using PyTorch 2.1.1 as the deep learning framework and
Gurobi 11 [31] to solve the various constraint satisfaction problems (see [32] for the source code). Gurobi
can also produce multiple solutions to constraint satisfaction problems, a functionality that we exploited
to generate multiple counterexamples. We run our software on a High Performance Computing (HPC)
center using used a node equipped 2 Intel(R) Xeon(R) CPU E5-2650 v3 2.30GHz, 1 GPU Nvidia T4, 160GB
of RAM, and running Ubuntu 20.04.3 LTS. The HPC is handled by the SLURM workload manager [33].
We assigned the corresponding job 20 CPU cores, 150GB of RAM, and the whole GPU of the node. With
this settings, we could synthesize several certified neural networks with respect to different sizes of the
hidden part (up to 10 hidden layers with 10 nodes each) and different learning rates (ranging from 10−2

to 10−4). The fastest experiment took 2 CEGIS iterations and terminated in 43 seconds, whereas the
longer experiment took 136 CEGIS iterations and terminated in about 14 hours and 15 minutes. Clearly,
running the same experiments again will lead to different data due to the serveral randomness sources
inside the whole process.

3. Open Research Lines

The work in [1] shed light on the following current limitations of the approach.

Computational complexity aspects. The neural networks we considered in [1] were fairly small.
This choice was primarily made to keep the computational overhead reasonable in order to understand
if the synthesis of certified neural networks was possible or not. The main bottlenecks that we identified
are related to (i) training of the neural network, (ii) formal verification of the property, (iii) solving a QP
problem to repair the counterexample, and (iv) total number of CEGIS iterations. Training scales with
appropriate hardware that boosts parallelization (GPUs). Formal verification is in general NP-complete
for this kind of networks and properties that fall under the class of constraints that we can handle
[7]. A quadratic problem extends a MILP (which is NP-hard problem) by adding a quadratic objective
function. At the moment the properties we are considering are simple, so this isn’t a concern right now.
Clearly, the bigger the 𝐹post the worse the performances. The number of the CEGIS iterations depends
on how good we are to augment the dataset with new (input,output) pairs that restore satisfiability
of the property where it does not hold. This latter one is at the moment the most important, since
every CEGIS iteration entails all other computationally expensive steps. To reduce the whole number
of iterations, the training phase should inject soft constraints, to try to output a neural network which
is already “close” to satisfy the property.

More expressive networks. The class of ReLU neural networks is straightforward to be encoded in
LRA. However, in general we might consider neural networks with other non-linear activation functions
(e.g., sigmoid) or a different class of constraints. Our approach is modular and thus can work with other
networks and properties provided that we have methods and techniques to handle the corresponding
CSP and repair problems. More non-linear functions can be handled by means of abstract interpretation
techniques, where non-linearity is addressed by means of over-approximations. In this settings, if
the formal verification phase does not find any counterexample, then we are sure that the network is
certified. Instead, if counterexamples are found, we need to test whether they are spurious (i.e., not
actual counterexamples) or not.

More expressive properties. At the moment we are verifying atemporal properties on the input-
output pairs of the neural network. To assure that an actual control system behaves as expected, it
is important to verify temporal properties on the control policy implemented by the neural network,
to guarantee that the control objectives are achieved (liveness properties) in a safe manner (safety



properties). This would require to extend the property specification language to some temporal logic,
as well as to lift the certification techniques to reinforcement learning algorithms. Another direction
worth investigating is the synthesis of neural networks that are certified for more than one property. In
any real scenario the network is expected to be certified on a large number of requirements.

Other case studies. We tested our approach on the MANNERS-DB example from [30]. Extending
the experiments with datasets and examples coming from different domains is a worthwhile research
direction. One test-case worth mentioning is the ACASXu (Airborne Collision Avoidance System X for
unmanned aircrafts), where a set of neural networks act as action advisor for the possible aircraft’s
maneuvers, and that has become a de-facto benchmark for the verification of neural networks (see [7]).
Another source of relevant test cases is the VNN-COMP [2].

4. Conclusions

This paper is a summary of [1] that proposes a method based on the CEGIS loop to automatically
synthesize certified neural networks. Our approach is based on a formal verification part that seeks
counterexamples that are then repaired and injected into training to correct wrong behavior of the
network with respect to the properties to enforce.
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