
Formalizing decisional and operational roles in legal
contracts via term-modal logic
Stef Frijters1, Matteo Pascucci2

1KU Leuven, Belgium
2Central European University, Austria

Abstract
Translations of legal contracts into formal specifications that can be used for assisted reasoning are currently
gaining considerable attention in AI and law. Yet, the conceptual intricacy of some of the normative notions
involved in legal contracts continues to provide significant challenges to formalization; in accordance with
this, there is a need for developing general logic frameworks which allow for an appropriate analysis of the
fundamental components of a contractual situation. In the present work, we focus on the representation of
decisional and operational roles played by possibly distinct contracting parties. We provide a flexible framework,
which extends term-modal logic, where such roles can be effectively formalized and emphasized.

Keywords
Formal specification of legal contracts, logics in computer science, normative roles, decision and operation,
term-modal logic

1. Introduction

The formal analysis of legal contracts is an interdisciplinary area drawing attention from an increasing
number of researchers. For a recent and systematic review of approaches offered in the literature, see
Soavi et al. [?]. Our discussion will be limited to approaches based primarily on deductive methods, as
opposed to those based primarily on statistical methods. The basic ingredients of a deductively-driven
analysis of legal contracts can be described as follows: (i) identifying relevant normative concepts in
contracts (e.g. ‘right’, ‘duty’, ‘power’, ‘liability’, etc.) (ii) developing a theory of the semantic relations
among such concepts (e.g. holding that rights and duties are correlatives, in the sense that a party 𝑥 has
a duty towards a party 𝑦 iff 𝑦 has a corresponding right against 𝑥), (iii) identifying the range of possible
scenarios to which a type of contract applies (e.g. a sales agreement which concerns some category of
goods and involves parties playing some roles), (iv) generating a formal language and a deductive theory
over it that can be assessed with respect to the previous components.

Once one obtains a formal language that tracks all necessary concepts of a contract and a deductive
theory that handles both semantic relations and assumptions about scenarios regulated by the contract,
one can proceed further by automating reasoning tasks and/or creating a tool for user assistance. As
noted in [?], the formal analysis of contracts is part of a broader endeavour to automate aspects of
normative reasoning. Thus, in the literature one finds both approaches that are tailored to (certain types
of) contracts, such as Montazeri et al. [?] or He et al. [?], and more abstract approaches that provide a
flexible framework for normative reasoning, such as Libal and Pascucci [?] or Steen and Fuenmayor [?
]. Despite the number and variety of these approaches, the normative domain continues to provide
challenges to formalization, due to the conceptual intricacy of some of its core notions. The present
work contributes to this research area by addressing the problem of formalizing two fundamental layers
of roles in a legal contract: decisional roles and operational roles. We do this at a general level of analysis,
providing a framework that allows for representing different combinations of such roles.

OVERLAY 24: 6th International Workshop on Artificial Intelligence and fOrmal VERification, Logic, Automata, and sYnthesis
**This article results from a joint research work of the two authors.

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/deed.en

2. A working example on decisional and operational roles

We can briefly illustrate the difference between decisional roles and operational roles in a contract via
an example. Suppose that Anna, a student, wants to spend a period of one month at a university in a
foreign country and that she looks for an accommodation via a company called Student Housing. Such
a company happens to have a flat for Anna, which can be booked under the following condition: a
guarantor from Anna’s home institution is required to pay a deposit of 200e via online transfer to an
account associated with Student Housing at a banking institution called InterBank. For our purposes
we can neglect the additional condition that Anna will have to pay the rest of the rental fee by a certain
date. Anna accepts these conditions, finds a suitable guarantor in Prof. Benvenuti and stipulates a legal
contract with Student Housing including, among other things, all the information mentioned above.

Now, let us look at the parties emphasized in the example and the roles they play: Anna is the tenant,
Student Housing is the flat owner, Prof. Benvenuti is the guarantor and InterBank is the payment
addressee. The tenant and the flat owner are decisional roles, since the parties playing these roles
stipulate the contract at issue. By contrast, the guarantor and the payment addressee play operational
roles, since they are involved in the execution, rather than in the stipulation, of the contract.

In principle, the same roles could be played by different parties in similar circumstances (another
student interested in renting another flat with another company, etc.). Thus, when we want to design
a formal specification for this type of contract, it is convenient to keep track of the mentioned roles.
More generally, every type of contract brings with it certain decisional and operational roles that are
crucial to understand its content and that are invoked when one wants to check whether the contract
was fulfilled or violated (e.g. the guarantor did not pay the deposit by the given deadline).

3. Term-modal logic

Here we propose a formal framework that emphasizes the distinction between decisional and operational
roles in a contract and show its advantages over a standard representation in first-order (deontic) logic.
Our framework is an extension of term-modal logic, introduced by Fitting, Thalmann and Voronkov [?],
applied to normative reasoning by Frijters, Meheus and Van De Putte [?] and further developed in that
context by Frijters [? ?].

Term-modal logic (hereafter, TML) is an extension of first-order logic (hereafter, FOL) by means
of indexed modal operators of the form □𝜎 , where 𝜎 is a finite list of terms (individual variables or
constants). These terms stand for normative parties and □ will here represent a deontic operator
of obligation. The additional expressiveness of TML in comparison to FOL allows one to formally
capture the distinction between quantification over terms that occur as indices of a modal operator and
quantification over terms that occur in the scope of a modal operator. Such a distinction is exemplified
by the occurrences of 𝑥 and 𝑦 in the TML-formula below:

∀𝑥𝑦((Doctor(𝑦) ∧ PatientOf(𝑥, 𝑦)) → □𝑦𝑥Cure(𝑦, 𝑥))

We can read the whole formula as “for every 𝑥 and 𝑦, if 𝑦 is a doctor and 𝑥 is a patient of 𝑦, then it is
obligatory for 𝑦 towards 𝑥 that 𝑦 cures 𝑥”. In other words, every doctor has an obligation towards their
patients to cure them. The occurrences of 𝑥 and 𝑦 as indices of □ in the formula at issue convey an
agent-directed obligation, rendered by the natural language expression “for 𝑦 towards 𝑥” which could
not be directly captured in the language of (modal) FOL, as discussed in [?]. Clearly, being associated
with a direction is a fundamental feature of many obligations. Usually, if we change the direction of an
obligation, we give rise to a completely different norm. For instance, replacing □𝑦𝑥 with □𝑥𝑦 in the
TML-formula above yields the (odd) reading that it is obligatory for patients towards doctors that the
latter cure the former.

Our extension of TML will be called layered term-modal logic (hereafter, LTML) and is inspired by
the following observation, made by Novotná and Pascucci in [?]. Norms are often not reducible to
directed obligations; they rather result from an agreement or a contract: some parties stipulate that other

(possibly different) parties have to behave a certain way. Thus, a norm can conceptually be analysed as
a structure involving two layers of parties: one includes those parties that stipulate the agreement (i.e.
play decisional roles), the other those parties that are expected to act in accordance with the agreement
(i.e. play operational roles).

4. The formal framework

Let 𝐶 = {𝑎, 𝑏, . . .} be a countable set of individual constants and 𝑉 = {𝑥, 𝑦, . . .} a countable set of
individual variables, where 𝛼, 𝛽, . . . range over 𝐶 and 𝜈, 𝜉, . . . over 𝑉 . Let 𝑇 = 𝐶 ∪ 𝑉 be the set of
terms and 𝜃, 𝜅, . . . the metavariables ranging over it. We use 𝜎1, 𝜎2, . . . to refer to finite (possibly empty)
lists of terms. Let Σ𝑛, for 𝑛 ∈ N, denote the set of all lists of terms with cardinality 𝑛 and Σ the union
of all Σ𝑛. We take 𝜈 = ⟨𝜈1, . . . , 𝜈𝑛⟩ and ∀𝜈 as an abbreviation for ∀𝜈1 . . . ∀𝜈𝑛. Finally, for 𝑛 ∈ N, let
𝒫𝑛 be a countable set of 𝑛-ary predicate symbols and 𝒫 denote the union of all 𝒫𝑛.

LTML-formulas are defined as below, where 𝑃 ∈ 𝒫𝑛, 𝜎1, 𝜎2, 𝜎3, 𝜎4 ∈ Σ, 𝜃, 𝜅 ∈ 𝑇 , and 𝜈 ∈ 𝑉 :

𝜙 ::= 𝑃 (𝜃1, . . . , 𝜃𝑛) | 𝜃 = 𝜅 | ¬𝜙 | 𝜙 ∨ 𝜙 | (∀𝜈)𝜙 | Δ(𝜎1⇒𝜎2)
(𝜎3⇒𝜎4)

𝜙 | Δ(𝜎1⇒𝜎2)
(𝜎3 ̸⇒𝜎4)

𝜙

We take symbols ⊤, ⊥, ∧, →, ↔ and ∃ to be defined in a standard way. We write 𝜃 ̸= 𝜅 as an
abbreviation for ¬ 𝜃 = 𝜅. Parentheses are omitted whenever possible. Free and bound variables in
formulas are defined as usual, with one addition: the free variables in Δ

(𝜎1⇒𝜎2)
(𝜎3⇒𝜎4)

are all the variables
that occur free in 𝜙 and all the variables that occur in 𝜎1, 𝜎2, 𝜎3 and 𝜎4. A formula 𝜙 is a sentence iff all
variables in 𝜙 are bound. We use Sent for the set of all LTML-sentences.

The additional expressiveness of LTML in comparison to FOL is given by the following features:
for every four lists 𝜎1, . . . , 𝜎4 of terms, we have the operators Δ

(𝜎1⇒𝜎2)
(𝜎3⇒𝜎4)

and Δ
(𝜎1⇒𝜎2)
(𝜎3 ̸⇒𝜎4)

, which take
a formula as input and give a formula as output. These operators were introduced in [?] within a
propositional framework. They can be regarded as special term-modal operators, given that they are
modal operators indexed with a quadruple of lists (𝜎1, . . . , 𝜎4) grouped into two layers. In the present
context, the upper layer indicates parties playing decisional roles, whereas the lower layer indicates
parties playing operational roles. Moreover, each layer has a direction thanks to the presence of symbols
⇒ and ̸⇒. We will call Δ(𝜎1⇒𝜎2)

(𝜎3⇒𝜎4)
and Δ

(𝜎1⇒𝜎2)
(𝜎3 ̸⇒𝜎4)

layered term-modal operators (or LTML-operators).
The flexible reading of these operators can be explained by examining some schemata of formulas. If

none of the lists 𝜎1, . . . , 𝜎4 is empty, we get the interpretation in Table 1:

Formula Reading

Δ
(𝜎1⇒𝜎2)
(𝜎3⇒𝜎4)

𝜑 on the basis of a stipulation of 𝜎1 relevant to 𝜎2, 𝜎3 must
bring about 𝜑 towards 𝜎4

Δ
(𝜎1⇒𝜎2)
(𝜎3 ̸⇒𝜎4)

𝜑 on the basis of a stipulation of 𝜎1 relevant to 𝜎2, 𝜎3 must
avoid bringing about 𝜑 towards 𝜎4

Table 1
Reading of layered term-modal operators

This reading indicates that 𝜎1 and 𝜎3 (which occur to the left of arrow symbols) are lists of normative
parties playing active roles, while 𝜎2 and 𝜎4 (which occur to the right of arrow symbols) are lists of
normative parties playing passive roles. Normative parties can also be said to be legal agents, where
these are not necessarily individual agents (e.g. sometimes a legal agent is an institution like a bank).
Notice, however, that the same party can play both an active role and a passive role, as well as occur
both in the upper layer (decisional) and in the lower layer (operational). For instance, consider the
occurrences of 𝑥 or of 𝑧 in the following schema: Δ(𝑥,𝑦 ⇒ 𝑥,𝑧)

(𝑥,𝑤 ⇒ 𝑧) 𝜑. Accordingly, given that most legal

contracts are such that all agreeing parties play both an active decisional role (being involved in the
stipulation) and a passive decisional role (being affected by the fulfilment/violation of the contract), it
is often the case that 𝜎1 and 𝜎2 are the same lists of parties. In those cases, one can adopt a graphical
convention and write e.g. Δ(𝑥,𝑦 ⇔ 𝑥,𝑦)

(𝑤 ⇒ 𝑧) 𝜑, with a bidirectional arrow which emphasizes the reciprocity
of the contract at the decisional level. We can use an instance of the latter schema to interpret the
working example from section ??: we assume that 𝑥 is Anna (tenant), 𝑦 is Student Union (flat owner),
𝑤 is Prof. Benvenuti (guarantor), 𝑧 is InterBank (payment addressee) and let 𝜑 = PayOnline(200e)
describe the fact that 200e are paid via online transfer. The whole can be read in accordance with Table
??, namely: on the basis of a stipulation between Anna and Student Union, Prof. Benvenuti has to pay
200e via online transfer to InterBank.

In order to move from the representation of a specific contract to the representation of a type of
contract, we add role-labels to the positions occupied by indices of an LTML-operator, so as to obtain
an interpreted pattern of LTML-operator. In this regard, consider the type of contract instantiated
by the working example. We identified four fundamental roles in the working example (tenant, flat
owner, guarantor and payment addressee). We can thus define the following conditions on an operator
Δ

(𝜎1⇒𝜎2)
(𝜎3⇒𝜎4)

: both 𝜎1 and 𝜎2 is an ordered pair of terms (the same pair), where the first term plays the role
of 𝑡𝑒𝑛𝑎𝑛𝑡 and the second term plays the role of 𝑓𝑙𝑎𝑡 𝑜𝑤𝑛𝑒𝑟; 𝜎3 consists of a single term playing the role
of 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑜𝑟; finally, 𝜎4 consists of a single term playing the role of 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑒. The result
is an interpreted pattern of LTML-operator where we can use any indices different from 𝑥, 𝑦, 𝑤 and 𝑧
to formalize a new instance of the same type of contract mentioned in the working example. Different
types of contracts will be associated with other interpreted patterns of LTML-operators. In other words,
we can always introduce a new set of role-labels to build interpreted patterns of LTML-operators,
depending on the sort of legal contract that we want to analyse.

If some of the lists of terms in an LTML-operator are empty, the reading of the formulas in Table
?? can be changed accordingly. For a systematic analysis of all possible cases, see [?]. For instance,
if 𝜎1 = ∅ and 𝜎2 ̸= ∅, we are representing a norm based on the fulfillment of a condition (e.g. a norm
applicable to the category of self-employed workers), if 𝜎1 ̸= ∅ and 𝜎2 = ∅ we are representing a
unilateral decision (e.g. a norm resulting from a judicial decision). If 𝜎1 = 𝜎2 = ∅, then the decisional
layer is vacuously mentioned, and we are ultimately representing a norm without any reference to its
source (e.g. the simple command “Carla ought to pay a rental fee to Emma”). An empty list of terms in
an LTML-operator will also be denoted by a blank space. Moreover, * will denote either ⇒ or ̸⇒.

The deductive relevance of empty lists of terms in LTML-operators is clarified via the notion of
reference-abstraction, which indicates how one can safely perform an inference from a norm𝜓1 contained
in a legal contract to a simpler norm 𝜓2 by removing (some) reference to some of the parties involved in
𝜓1, either at the decisional level or at the operational level. Notice that any norm which is inferred by
following this procedure applies to the same legal context as the original norm. For instance, saying that
Prof. Benvenuti ought to pay 200e to InterBank due to an agreement between Anna and Student Union
implies that Prof. Benvenuti ought to pay 200e due to an agreement between Anna and Student Union.
In performing such an inference, the important point to keep in mind is that the latter norm should be
interpreted in a context-relative way, namely as based on the information available in the particular
contract analysed. We cannot apply the inferred norm to arbitrary circumstances. To better illustrate
the idea of context-relativity, it is convenient to look at an even simpler norm that we can infer in the
working example, namely that Prof. Benvenuti ought to pay 200e. Such a norm says something about
the specific legal scenario analysed and should not be confused with the absolute norm according to
which Prof. Benvenuti ought to pay 200e under any circumstances and to an arbitrary party.

Another noteworthy aspect of operators endowed with indices of normative parties and with a
direction, like our operator Δ(𝜎1⇒𝜎2)

(𝜎3⇒𝜎4)
, is that they can be used to express Hohfeldian concepts and their

relations; this aspect is more extensively discussed in [?]. In particular, consider the correlativity of
rights and duties: 𝑥 has a duty towards 𝑦 iff 𝑦 has a right against 𝑥. Under this view, the fact that
Prof. Benvenuti ought to pay 200e to InterBank can be interpreted both as a duty of Prof. Benvenuti
towards InterBank and as a right of InterBank against Prof. Benvenuti. Therefore, as far as the symbolic

language is concerned, both these instances of Hohfeldian concepts can be expressed by the same
formula.

Definition 1 (Reference-abstraction). Let 𝜓1 = Δ
(𝜎1⇒𝜎2)
(𝜎3 * 𝜎4)

𝜑; a reference-abstraction of 𝜓1 is any
LTML-formula 𝜓2 obtained from 𝜓1 by removing some occurrence of an index in its main LTML-operator.

The relation of being a reference-abstraction is taken to be transitive. Thus, Δ(𝑦 ⇒)
(𝑤 ⇒ 𝑧)𝜑 is a reference-

abstraction of Δ(𝑥,𝑦 ⇒ 𝑦)
(𝑥,𝑤 ⇒ 𝑧)𝜑 and Δ

(𝜎1⇒)
(𝜎3⇒) is a reference-abstraction of Δ(𝜎1⇒𝜎2)

(𝜎3⇒𝜎4)
.1

5. Semantics

We provide a semantics for LTML based on neighborhood models. For a related semantics in the case of
TML, see Frijters and Van De Putte [?]. We stress that reference-abstraction is addressed by clause 3.1
of the following definition. Given a set 𝑋 , we take L(𝑋) to be the set of all finite lists (sequences) over
𝑋 and 𝑙1(𝑋) ⊑ 𝑙2(𝑋) to mean that 𝑙1(𝑋) is an order-preserving list formed by a subset of the objects
in a list 𝑙2(𝑋). In other words, 𝑙1(𝑋) ⊑ 𝑙2(𝑋) means that 𝑙1(𝑋) and 𝑙2(𝑋) are two lists over the same
set 𝑋 and the former is obtained from the latter by possibly removing some objects (normative parties,
in the present context).

Definition 2. An LTML-model is a tuple 𝑀 = ⟨𝑊,𝒜, 𝑁, 𝐼⟩, where:
1. 𝑊 ̸= ∅ is the world domain of 𝑀
2. 𝒜 ≠ ∅ is the agent domain of 𝑀
3. 𝑁 :𝑊×L(𝒜)×L(𝒜)×L(𝒜)×L(𝒜) → ℘(℘(𝑊)) is the neighborhood function of𝑀 , where:

3.1. if 𝑋 ∈ 𝑁(𝑤, 𝑙1(𝒜), 𝑙2(𝒜), 𝑙3(𝒜), 𝑙4(𝒜)), 𝑙′1(𝒜) ⊑ 𝑙1(𝒜), 𝑙′2(𝒜) ⊑ 𝑙2(𝒜), 𝑙′3(𝒜) ⊑ 𝑙3(𝒜)
and 𝑙′4(𝒜) ⊑ 𝑙4(𝒜), then 𝑋 ∈ 𝑁(𝑤, 𝑙′1(𝒜), 𝑙′2(𝒜), 𝑙′3(𝒜), 𝑙′4(𝒜))

4. 𝐼 is an interpretation function of 𝑀 , where:
4.1. 𝐼 : 𝑇 → 𝒜
4.2. 𝐼 : 𝒫𝑛 ×𝑊 → ℘(𝒜𝑛) for every 𝑛 ∈ N such that 𝑛 ≥ 1.
4.3. 𝐼 : 𝒫0 → ℘(𝑊)

We stress that an 𝑛-ary predicate 𝒫𝑛 is interpreted at each world 𝑤 as a set of 𝑛-tuples of normative
parties.

Given some model𝑀 = ⟨𝑊,𝒜, 𝑁, 𝐼⟩ and 𝜎 = ⟨𝜃1, . . . , 𝜃𝑛⟩, we will henceforth use 𝐼(𝜎) as shorthand
for the tuple ⟨𝐼(𝜃1), . . . , 𝐼(𝜃𝑛)⟩. We call |𝜙|𝑀 = {𝑤 | 𝑤 ∈ 𝑊 and 𝑀,𝑤 |= 𝜙} the truth set of 𝜙. For
any 𝜈 ∈ 𝑉 , 𝑀 ′ = ⟨𝑊,𝒜, 𝑁, 𝐼 ′⟩ is a 𝜈-alternative of 𝑀 = ⟨𝑊,𝒜, 𝑁, 𝐼⟩ iff 𝐼 ′ differs at most from 𝐼 in
the member of 𝒜 that 𝐼 ′ assigns to 𝜈.

Definition 3 (Semantic Clauses). For any LTML-model 𝑀 = ⟨𝑊,𝒜, 𝑁, 𝐼⟩ and 𝑤 ∈𝑊 :
SC1 If 𝑃 ∈ 𝒫𝑛 for some 𝑛 ≥ 1, then 𝑀,𝑤 |= 𝑃 (𝜎) iff 𝐼(𝜎) ∈ 𝐼(𝑃,𝑤)
SC1’ If 𝑃 ∈ 𝒫0, then 𝑀,𝑤 |= 𝑃 iff 𝑤 ∈ 𝐼(𝑃)
SC2 𝑀,𝑤 |= ¬𝜙 iff 𝑀,𝑤 ̸|= 𝜙
SC3 𝑀,𝑤 |= 𝜙 ∨ 𝜓 iff 𝑀,𝑤 |= 𝜙 or 𝑀,𝑤 |= 𝜓
SC4 𝑀,𝑤 |= 𝜃 = 𝜅 iff 𝐼(𝜃) = 𝐼(𝜅)
SC5 𝑀,𝑤 |= Δ𝜎1⇒𝜎2

𝜎3⇒𝜎4
𝜙 iff |𝜙|𝑀 ∈ 𝑁(𝑤, 𝐼(𝜎1), 𝐼(𝜎2), 𝐼(𝜎3), 𝐼(𝜎4))

SC6 𝑀,𝑤 |= (∀𝜈)𝜙 iff for every 𝜈-alternative 𝑀 ′: 𝑀 ′, 𝑤 |= 𝜙.

Definition 4. Let Γ ⊆ Sent and 𝜙 ∈ Sent: 𝜙 is a semantic consequence of Γ iff for every LTML-model
𝑀 = ⟨𝑊,𝒜, 𝑁, 𝐼⟩ and 𝑤 ∈𝑊 : if 𝑀,𝑤 |= 𝜓 for all 𝜓 ∈ Γ, then 𝑀,𝑤 |= 𝜙. If Γ = ∅, then 𝜑 is valid.
1The TML-operators used in [?] correspond to LTML-operators of the form Δ

(⇒)

(𝜎3⇒) or Δ(𝜎1⇒)

(⇒), namely where only
active roles in one layer are mentioned, while those used in [? ?] could match LTML-operators having any of the forms
Δ

(𝜎1⇒𝜎2)

(⇒), Δ
(⇒)

(𝜎3⇒𝜎4)
, Δ(𝜎1⇒)

(⇒𝜎4)
and Δ

(⇒𝜎2)

(𝜎3⇒), given that they allow for a distinction between active roles and passive
roles, although they do not take layers of roles into account.

6. Axiomatic system

An axiomatization of LTML on neighborhood models is obtained by closing an axiomatization of
classical propositional logic under the principles in Table ??.2 As in [?], we use the following notation:
𝜙(𝜃/𝜅) is the result of replacing all free occurrences of 𝜅 in 𝜙 by 𝜃, renaming bound variables if
necessary to avoid rendering new occurrences of 𝜃 bound in 𝜙(𝜃/𝜅). 𝜙(𝜃//𝜅) is the result of possibly
replacing some free occurrences of 𝜅 in 𝜙 by 𝜃, again renaming something if necessary.

A formula 𝜙 ∈ Sent is a theorem of LTML (in symbols, ⊢ 𝜙) iff 𝜙 can be derived from the axioms
and rules of LTML. 𝜙 ∈ Sent is derivable from Γ ⊆ Sent in LTML (denoted Γ ⊢ 𝜙) iff there are
𝜓1, . . . , 𝜓𝑛 ∈ Γ such that ⊢ (𝜓1 ∧ . . . ∧ 𝜓𝑛) → 𝜙.

Label Axiom Schema Label Rule
(UI) (∀𝜈)𝜙→ 𝜙(𝛼/𝜈) (RE) if ⊢ 𝜙↔ 𝜓, then ⊢ Δ

(𝜎1⇒𝜎2)
(𝜎3 * 𝜎4)

𝜙↔ Δ
(𝜎1⇒𝜎2)
(𝜎3 * 𝜎4)

𝜓

(REF) 𝛼 = 𝛼 (MP) to infer 𝜓 from the assumptions 𝜑 and 𝜙→ 𝜓
(SUB) (𝛼 = 𝛽) → (𝜙→ 𝜙(𝛼//𝛽)) (UG) if ⊢ 𝜙→ 𝜓(𝛼/𝜈) and 𝛼 neither occurs in 𝜙 nor in 𝜓,
(ABS) if 𝜓 is a reference-abstraction of 𝜙, then ⊢ 𝜙→ (∀𝜈)𝜓.

then 𝜑→ 𝜓

Table 2
Axiomatization

We emphasize that, in the axiomatic basis provided above, principle ABS gives rise to a form of Modus
Ponens which captures the ideas behind reference-abstraction.

7. Final remarks

In this work, we presented an extension of term-modal logic called LTML (layered term-modal logic) and
showed that it can properly account for the distinction between decisional roles and operational roles
in a contract, which is a crucial component of legal reasoning. Our proposal combines intuitions put
forward in [?] with a language whose expressiveness is higher than modal FOL. Our future inquiries
in this area will be dedicated to the analysis of fragments of LTML that are suitable for an automated
representation of selected types of contract and thus for the development of tools for assisted reasoning.

Acknowledgments

The following statement applies to Matteo Pascucci: This research was funded in whole or in part by
the Austrian Science Fund (FWF) 10.55776/I6499. For open access purposes, the author has applied a CC
BY public copyright license to any author-accepted manuscript version arising from this submission.

2Adding other principles such as aggregation or inheritance to the axiomatisation provided is straightforward; see [?].

	1 Introduction
	2 A working example on decisional and operational roles
	3 Term-modal logic
	4 The formal framework
	5 Semantics
	6 Axiomatic system
	7 Final remarks

