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Abstract
Hybrid systems combine discrete and continuous behaviors and are prevalent in applications such as automotive,
robotics, and avionics, where precise interaction between control logic and dynamic environments is critical. This
paper summarizes the results of [1], where a computable and compositional semantics for hybrid systems was first
proposed. The formalism supports the composition of smaller subsystems and enables algorithmic analysis using
computable functions. The approach addresses the challenge of undecidability in hybrid system reachability by
employing approximate decision procedures. A key feature is the use of multifunctions to handle nondeterministic
systems and ensure computability is preserved during system composition and the introduction of atomic
interfaces to avoid circular dependencies in the composition. Several classes of computable multifunctions are
identified to guarantee computational feasibility. This framework provides a scalable, compositional approach to
the modeling and verification of complex hybrid systems.
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1. Introduction

Hybrid systems—systems characterized by both discrete and continuous behaviors—are pervasive in
real-world applications, such as automotive control systems, robotics, avionics, and process control,
where precise interactions between a continuous environment and discrete control logic are critical.
The intrinsic complexity of these systems is compounded by their size and interconnectivity, involving
various components like controllers, sensors, actuators, and software, all interacting within a dynamic
environment. This emphasizes the need for a rigorous and compositional approach to model and analyze
hybrid systems effectively [2].

By decomposing complex systems into smaller, more manageable parts, a compositional description
of a system allows each subcomponent to be analyzed independently and allows for abstractions at
various levels of detail. For instance, high-level abstractions might focus on key system properties,
while low-level abstractions may include more detailed implementation specifics. A compositional
method aids in both understanding and verifying system behavior.

A central challenge in hybrid systems is the reachability problem, which involves determining whether
a particular system state can be reached. Unfortunately, this problem is undecidable for most hybrid
systems, except for timed automata and some generalizations [3]. Consequently, many approaches
focus on approximate decision procedures and techniques for computing approximations of reachable
sets [4, 5].

In [1], we have proposed a novel behavioral formalism for hybrid systems, which is both computable
and compositional. This formalism is abstract and general, allowing it to serve as a semantic framework
for various other modeling languages and formalisms proposed in the literature, including Hybrid
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Reactive Modules [6], Hybrid I/O Automata (HIOA) [7], and the Compositional Interchange Format [8].
The goal of this work was to support the algorithmic analysis of hybrid systems, which has been
somewhat neglected in other formalisms that focus primarily on system decomposition.

The formalism emphasizes two key features: compositionality and computability. Compositionality
refers to the ability to describe a large system as the composition of smaller, independently analyzed
components. Computability refers to the use of computable analysis—a mathematical theory developed
by K. Weihrauch and co-workers—to describe functions with a formalism that represents them with
an increasing level of precision as computation evolves [9]. This theory is particularly useful in
approximating the behavior of complex systems and ensuring that the results of such approximations
are computationally feasible.

2. Behavioural Formalism

Our formalism extends the Hybrid I/O Automaton (HIOA) model by integrating it with computable
analysis. The core idea of computable analysis is to describe the evolution of a system through functions
that increase in precision as the computation progresses, allowing for approximate solutions to problems
like reachability. A key feature of this approach is the introduction of multifunctions, which generalize
traditional functions by mapping inputs to sets of outputs rather than single outputs. This is particularly
useful for handling nondeterministic systems, where a single input might lead to multiple possible
outcomes, and enables the parallel composition of multiple automata without losing computability.

Throughout the paper, we fix a countable universal set of variables, where every variable has a type
that defines the domain of that variable. Elementary types include booleans, integers, and reals. Given
a set of variables 𝑉 , a valuation over 𝑉 is a function that associates every variable in 𝑉 with a value
in its type. We denote by Val(𝑉 ) the set of all valuations over 𝑉 . A trajectory over a set of variables
𝑉 is a function 𝜁 : 𝐼 ↦→ Val(𝑉 ), where 𝐼 is a left-closed interval with left endpoint equal to 0. We
say that a trajectory is continuous if it is a continuous function, and we denote by CTrajs(𝑉 ) the set
of all continuous trajectories over 𝑉 . To capture the mixed nature of hybrid systems, we represent
their evolution by hybrid trajectories alternating continuous trajectories with discrete events. The
special stuttering event 𝜏 is used to represent hidden events externally generated by the environment.
HTrajs(𝐴, 𝑉 ) is the set of all hybrid trajectories over the set of events 𝐴 and the set of variables 𝑉 .

Definition 2.1 (Hybrid input/output automaton). A hybrid input/output automaton is a tuple 𝐻i/o =
(𝐼,𝑂, 𝑈, 𝑌,𝑅i/o, 𝐹i/o) where:

1. 𝐼 and 𝑂 are disjoint sets of input and output events. We take 𝐴 = 𝐼 ∪𝑂;
2. 𝑈 and 𝑌 are disjoint sets of input and output variables. We take 𝑉 = 𝑈 ∪ 𝑌 ;
3. The discrete input/output behaviour is a multifunction

𝑅i/o : Val(𝑉 )× (𝐴 ∪ {𝜏})×Val(𝑈) ⇒ Val(𝑌 );

4. The continuous input/output behaviour is a multifunction

𝐹i/o : Val(𝑌 )× CTrajs(𝑈) ⇒ CTrajs(𝑌 )

respecting some natural prefix- and suffix- closure conditions detailed in [1].

In Item 3 of the definition above, saying that y ∈ 𝑅i/o(v, 𝑎,u) means that y is a valid output after
the discrete transition from v ∈ Val(𝑉 ), with event 𝑎, and where u ∈ Val(𝑈) are the values of the
input variables after the transition. In Item 4, saying that 𝜂 ∈ 𝐹i/o(y, 𝜐) means that 𝜂 is a valid output
trajectory for input trajectory 𝜐 with initial value y.

The behaviour of 𝐻i/o is the map 𝐵i/o : Val(𝑌 ) × HTrajs(𝐼, 𝑈) ⇒ HTrajs(𝑂, 𝑌 ) such that
𝛽 ∈ 𝐵i/o(y, 𝛼) if, and only if, 𝛽 is an output of 𝐻i/o for input 𝛼 with initial value y. In contrast to
other formalisms, our approach preserves computability even when systems are composed of several
interconnected components. In [1], we demonstrated that the behavioral semantics is compositional,
that is, that the behaviour of the composition of two HIOAs is exactly the composition of the behaviours
of the two components.



3. Challenges in System Composition: Circular Dependencies

When composing hybrid systems, one of the major challenges is avoiding circular dependencies between
variables. Circular dependencies arise when two systems or components impose mutually dependent
constraints on each other’s variables, which can lead to non-converging loops and prevent meaningful
system composition.

To address this, we introduced a notion of interfaces between components, which explicitly describe
the dependencies between variables. By enforcing a condition that ensures compatibility between
composed automata (i.e., avoiding circular dependencies), our work demonstrates that it is possible to
compute the discrete and continuous dynamics of a composed system without running into computational
issues. We solved the problem of circular dependencies by the introduction of atomic interfaces, which
break down interfaces into smaller, simpler components. This decomposition simplifies the process of
checking for compatibility between systems and ensures that their composition is well-structured and
computationally feasible.

An atomic component is unidirectional, meaning that its output variables may depend on its input
variables, though none of its input variables may depend on any of its output variables. In other words,
there is no feedback. Two components can be composed together (are compatible) if the composition
does not introduce any circular dependencies. In particular, two atomic components 𝐻i/o1

, 𝐻i/o2
can

be composed together if for one of the two, say 𝐻i/o2
, its output variables do not intersect the input

variables of the other. Then, the behavior of the composition can be obtained by computing first the
output of 𝐻i/o1

, which depends only on the input of 𝐻i/o1
, and then computing the output of 𝐻i/o2

,
which may depend on the output of 𝐻i/o1

as well. We call this operation dependent product. It turns out
that any collection of atomic components can be totally ordered so that its behavior can be computed
by applying the dependent product to the first two components, then applying the dependent product
to the result and to the third component, and so on. Therefore, everything reduces to computing the
dependent product of two components. In particular, whenever we deal with computability, it suffices
to show that the dependent product is a computable operator.

We say that a hybrid input/output automaton has an atomic decomposition if its behavior is the
same as the behavior of the composition of a collection of atomic components, called an atomic
decomposition. We say that two automata are compatible (can be composed) if they have compatible
atomic decompositions. It turns out that the union of the atomic decompositions of two automata is an
atomic decomposition of the composition of the two automata. Therefore, the behavior of any complex
automaton can be computed in terms of dependent products of atomic decompositions. Furthermore,
the atomic decompositions are known by construction whenever we compose automata with known
atomic decompositions.

An important caveat is the definition of dependency. Intuitively, a variable 𝑦 does not depend on
a collection of variables 𝑈 if there is no way to change the values of variables in 𝑈 so that the value
of 𝑦 changes. This concept is straightforward for discrete transitions. When we move to trajectories,
the dependencies involve time as well. Therefore, changing an input trajectory may affect output
trajectories in the past, in the present, and in the future. Changing the past is unfeasible, but changing
the present and the future is feasible. In particular, it is common within control theory to distinguish
between input, state, and output variables (u, x, y) and specify the behavior of a system in terms of
equations of the form 𝑥′ = 𝑓(𝑢, 𝑥) and 𝑦 = 𝑔(𝑥). In this case, the dependency between 𝑢 and 𝑦 is only
on the future and is bound by a differential equation. We know that, under appropriate conditions on 𝑓 ,
circular dependencies are not a problem in such cases. To address the issue, we distinguish between
algebraic and integral dependencies, where informally, algebraic dependency deals with the present
while integral dependency deals with the future. Our case above is an example of integral dependence.
Then, we impose no circularity only on the algebraic dependencies. Of course, this means showing
how it is possible to compute a dependent product under integral dependencies. We do so via fixpoint
operators.



4. Computable Multifunctions for Hybrid Systems

The second main contribution of our work is the identification of classes of multifunctions that are
computable when systems are composed by establishing several conditions under which the dependent
product and the fixpoint operators remain computable. These conditions include:

• Compactness: The functions are bounded in such a way that they can be handled with finite
computational resources. We also considered the logically dual condition of overtness and that
of locatedness, which rules out pathological counterexamples that exist for logical rather than
topological reasons.

• Lipschitz continuity: The functions have a bounded rate of change, ensuring that small changes
in input lead to proportionally small changes in output.

• Linear growth: The growth of the functions is limited by a linear function, ensuring that the
computations remain tractable over time.

• Upper Semicontinuity: Prevents downward jumps of the function but allows upward jumps,
ensuring that the functions can be approximated from above.

• Lower Semicontinuity: Prevents upward jumps of the function but allows downward jumps,
ensuring that the functions can be approximated from below.

By focusing on specific combinations of these classes of functions, we showed that it is possible to build
hybrid systems that are not only theoretically sound but also computationally tractable.

To prove computability of the composition of hybrid behaviours, we first showed that the composition
of purely discrete behaviours can be computed via the discrete dependent product.

Theorem 4.1. Suppose that 𝐻i/o1
and 𝐻i/o2

are hybrid components with compatible atomic decompo-
sitions. Then the composition 𝑅i/o1

‖𝑅i/o2
of the discrete input/output behaviours is computable for the

following classes of multifunctions.
(a) Upper-semicontinuous compact-valued functions with nonempty values.
(b) Lower-semicontinuous overt-valued functions with nonempty values.
(c) Continuous located-valued functions with nonempty values.
(d) Continuous singleton-valued functions over closed (respectively, open) sets.

This follows because the parallel composition can be computed as the (discrete) dependent product
of the input/output behaviours of the components. For the classes of multifunctions considered, the
dependent product for multifunctions is computable (and yields a multifunction of the same class.)

Then, we showed that the composition of continuous systems can be computed using the continuous
dependent product.

Theorem 4.2. Suppose that 𝐻i/o1
and 𝐻i/o2

are hybrid components with compatible atomic decomposi-
tions. Then the composition 𝐹i/o1

‖𝐹i/o2
of the continuous input/output behaviours is computable for the

following classes of multifunctions.
(a) Compact-valued effectively bounded-equicontinuous upper-semicontinuous functions with nonempty

values and locally linear growth.
(b) Overt-valued effectively locally Lipschitzian functions with nonempty values.
(c) Located-valued effectively locally Lipschitzian functions with nonempty values.
(d) Singleton-valued effectively locally-Lipschitzian functions.
(e) Singleton-valued effectively locally-Lipschitzian functions with locally linear growth and entire solu-

tions.

This follows because the parallel composition of continuous input/output behaviours can be computed
using only the operations of dependent product for multifunctions and the fixed-point operator for
flows. For the classes considered, we proved that the dependent product for multifunctions and the
fixed-point operator for flows is computable.

The two theorems above allowed us to prove our two main theorems. The first one showed that for
classes of discrete and continuous systems, corresponding to the cases in Theorem 4.2, the composition
of compatible discrete and continuous input/output behaviours can be computed, and thus that we can



compute the hybrid behaviour of a hybrid component. The second main result proved that from the
behaviour, we can extract the discrete and continuous parts, though some of the meta-information on
the continuous dynamics may be lost.

In conclusion, since 1) the automata obtained by extracting the discrete- and continuous- behaviours
of the corresponding atomic hybrid input-output automata are composable, and 2) the behaviour of
the composed automaton is computable, we conclude that the resulting behaviour satisfies the same
effectivity properties as the component behaviours, as these are preserved by each operation.

5. Conclusion and Future Work

In conclusion, in [1], we presented a computable and compositional semantics for hybrid systems,
offering a powerful framework for describing and analyzing complex systems that combine discrete
and continuous behaviors. By focusing on computability and compositionality, we provided a solution
to the challenges of modeling and verifying large hybrid systems.

The formalism is general enough to be applied to various other hybrid system models, and it
constitutes the theoretical foundation of the software package Ariadne, which we developed for
the formal verification of hybrid systems [10, 11, 12]. To support the compositional description and
analysis of systems, in Ariadne, a distinction between input, output, and internal variables and actions
has been introduced. A component can define the flows of its internal and output variables only and
the guards and reset functions of its internal and output actions only. This restriction guarantees that
there are no algebraic loops in the definition of the flows nor in the definitions of guards and invariants
and, thus, that the evolution of the composition can be computed.

Besides its application to Ariadne mentioned above, it should not be difficult to adapt our results to
existing formalisms like [13, 14, 15, 16, 17, 18, 19, 20, 21].

We expect as well our compositionality results to be amenable to further extensions. Indeed, besides
the minimal conditions required on the underlying operational model, part of the conditions are based
on the way the set of continuous dynamics are specified and, in particular, how they are formulated by
adapting or extending known results from differential analysis. In this paper, we focused on a specific
way to formulate differential equations, and we relied on Lipschitz assumptions. However, other known
theories can be adapted seemingly to our framework. In summary, we hope the framework introduced
in this paper will be the basis for linking approaches to the analysis of hybrid systems that otherwise
appear to be much further apart.
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