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Abstract
Vulnerability detection is particularly relevant in smart contracts, where modifying the code after deployment is
impossible. Machine learning solutions provide greater efficiency than static analyzers in speed and detection.
This study evaluates various classic machine-learning techniques and state-of-the-art neural networks for training
a vulnerability detector. We analyze the largest and most reliably labelled dataset of smart contracts currently
available, experimenting with six data representations of smart contracts and a multimodal approach. Our
experiments show that both deep and traditional machine learning methods excel in different scenarios. Notably,
eXtreme Gradient Boosting achieved an F1-score of 0.91 with the multimodal approach, which suggests its
potential for more robust classification. At the same time, the results underscore the need for larger datasets to
showcase the full potential of the evaluated methods.
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1. Introduction

Smart contracts (SCs) are executable programs stored on a blockchain, an immutable distributed ledger
that records data in linked blocks. Among the various blockchains supporting SCs [1], Ethereum is the
most popular, as it was the first to introduce them as its primary feature. SCs span multiple applications,
including decentralized finance, auctions, supply chain management, and real state transactions [2].
Public blockchains like Ethereum do not allow changes to the content of blocks. This protects the SCs
from tampering but also hinders the programmers from fixing any bugs that may be discovered later in
their code.

A relevant example is the “DAO Hack” Ethereum experienced in 2016, where a reentrancy1 vulnera-
bility caused the loss of $50 million worth of ether (ETH) and led to the hard fork of the blockchain.
Identifying and securing potential vulnerabilities in the code beforehand is critically important, espe-
cially before deploying such contracts. This is a well-known problem in academia and industry, where
standard solutions are based on formal verification and techniques such as static analysis. For this
reason, several tools and frameworks have been designed to detect vulnerabilities in SCs, including
Oyente [3], Mythril [4], Vandal[5], Securify [6], Smartcheck[7], and others [8]. Unfortunately, each of
these solutions targets only a few specific security properties [9] and cannot be generalized to a broad
spectrum of vulnerabilities [10]. Moreover, static analysis-based frameworks usually need much time
to run and, in most cases, are not maintained over time [11].

Machine Learning (ML) and Artificial Intelligence (AI) can offer a valid alternative to tackle this
problem [2]. Specifically, ML techniques like Support Vector Machines (SVM), Logistic Regression (LR),
K-Nearest Neighbors (KNN), and ensemble methods like Random Forests (RF), Gradient Boosting (GB),
and extreme gradient boosting (XGB) have been previously exploited to train vulnerability detectors on
Ethereum SCs [12, 13]. On the other hand, ML and, in particular, Deep Learning (DL) models such as
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Long Short-Term Memory networks (LSTM) [14, 15], transformers [16] and Graph Neural Networks
(GNN) [17] have been more recently investigated for this task. Despite the many proposed ML/AI-based
vulnerability detectors, numerous challenges remain unresolved, making it difficult to compare different
solutions [17]. Among these issues, the most notable are the lack of a large benchmark dataset, the
unclear definition of vulnerabilities and ambiguous taxonomies [18], and the unreliable labelling
process. In particular, a commonly adopted solution involves using various static analyzers to label the
source code of Solidity-written SCs, which are either collected from Etherscan [19] or obtained from
the large dataset called Smartbugs Wild [20]. Unfortunately, multiple studies report significant inconsis-
tencies when using this approach due to the high number of false positives reported by various tools [21].

Contributions. We evaluate various ML and DL methods for vulnerability detection in Ethereum
SCs, using the largest manually labelled dataset, Consolidated Groundtruth (CGT) [22], which, to our
knowledge, has not been used for AI model training before. We expand the dataset by including graph
representations and explore a multimodal approach, a novel strategy in this domain. Our experiments
indicate that classical ML techniques tend to outperform state-of-the-art neural networks, particularly
when applied multimodally. Our code has been made publicly accessible2.

2. Dataset

Our target dataset is called “Consolidated Groundtruth” (CGT) [23], aggregating 13 benchmark sets
of Ethereum SCs from the literature. It consolidates the ground truth by manually verifying the data
associated with these contracts. This consolidation significantly reduces inconsistencies, redundancies,
and incompleteness in the available data, ultimately improving its reliability and making it a valuable
resource for evaluating SC analysis tools. The ground truth corresponds to three types of labels, fine-
grained to coarse: property, SWC, and DASP. The property label relates to the specific label used in the
original benchmark dataset to identify a weakness. These are mapped to a common taxonomy, namely
the SWC (Smart Contract Weakness Classification) registry 3. In addition, the authors also provide the
mapping related to the more general taxonomy introduced in the DASP (Decentralized Application
Security Project) Top 10 4. For instance, the property “reentrancy” corresponds to SWC number “107”
and DASP class number “1”.

The CGT dataset consists of 4,859 contracts and 160 different software weaknesses (some examples
can be seen in Table 1). The data points are divided into 13 sets from independent sources, each
named according to the publication that presented it. The sets include manually labeled datasets from
CodeSmells [10], Zeus [24], eThor [25], ContractFuzzer [26], SolidiFI [27], EverEvolvingGame [28],
Doublade [29], NPChecker [30], JiuZhou [31], SBcurated [21], SWCregistry, EthRacer [32], and Not-
SoSmartC 5. The unique characteristics of each set, such as class balance, data distribution, and the
vulnerabilities considered (with some overlap across sets) are discussed in the original paper [23].

Each set’s data is offered as source code, bytecode, and runtime, although not all data points include
all three data types. The dataset contains 3871 source codes, 3076 bytecodes, and 3058 runtimes. From
now on, we refer to source code, runtime, and bytecode as modalities, corresponding to different data
representations of a contract. The source code is the contract written in Solidity. The bytecode is the
compiled binary, also known as “contract creation code”, which includes metadata and the actual
runtime code executed by the blockchain. As part of our contribution, we add three new modalities:
opcode, Abstract Syntax Trees (ASTs), and Control Flow Graphs (CFGs). The opcode (operation code),
or EVM opcode, represents the part of a machine language instruction that tells the CPU what operation
to perform. Here, we represent these instructions in a human-readable format, such as sequences of
operations like PUSH, JUMP, and STORE. ASTs are tree-like structures representing the source code’s
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logic, abstracting away syntax details. CFGs are graphical representations of a program’s control flow,
showing the order in which instructions or statements are executed. We generated opcode and ASTs
from the source code using the “solc” Solidity compiler, while CFGs were generated using Slither [33].

Property Definition DASP SWC N. Contracts Can be detected by

Unchecked External Calls Do not check the return value of external call functions. 4 104 25 Oyente, Zeus, Contractfuzzer

Dos Under External Influence Throwing exceptions inside a loop which can be influenced by external users. 5 113 6 Zeus

Strict Balance Equality Using strict balance quality to determine the execute logic. 10 132 5

Unmatched Type Assignment Assigning unmatched type to a value, which can lead to integer overflow. 10 0 22 Zeus

Transaction State Dependency Using tx.origin to check the permission. 2 115 5 Zeus

Reentrancy The re-entrancy bugs. 1 107 11 Oyente, Zeus, Contractfuzzer

Hard Code Address Using hard code address inside smart contracts. 10 0 84

Block Info Dependency Using block information-related APIs to determine the execute logic. 6 120 42 Oyente, Zeus, Contractfuzzer

Nested Call Executing CALL instruction inside an unlimited-length loop. 5 128 13

Deprecated APIs Using discarded or unrecommended APIs or instructions. 10 0 217

Unspecified Compiler Version Do not fix the smart contract to a specific version 10 103 508

Misleading Data Location Do not clarify the reference types of local variables of struct, array or mapping. 10 0 1

Unused Statement Creating values which never be used. 10 135 10

Unmatched ERC-20 standard Do not follow the ERC-20 standard for ICO contracts. 10 0 45

Missing Return Statement A function denote the type of return values but do not return anything. 10 0 231

Missing Interrupter Missing backdoor mechanism in order to handle emergencies. 10 0 488

Missing Reminder Missing events to notify caller whether some functions are successfully executed. 10 0 27

Greedy Contract A contract can receive Ethers but can not withdraw Ethers. 10 997 6 Mayan

High Gas Consumption Function Type Using inappropriate function type which can increase gas consumption. 10 0 352

High Gas Consumption Data Type Using inappropriate data type which can increase gas consumption. 10 0 0

Table 1
Vulnerabilities considered by Codesmells [10].

3. Experimental Setup

This study explores the feasibility of using ML to detect vulnerabilities in Solidity SCs automatically.
We approach this as a multiclass, multilabel classification task, as a single contract may be affected by
multiple vulnerabilities. We evaluated ten different ML and DL models: the pretrained transformer
CodeBERT [34], Feed-Forward Neural Network (FNN), LSTM, GNN, SVM, RF, LR, KNN, GB, and XGB.
These models were selected based on their strengths and suitability for handling text data, graph data,
imbalanced classes, and small datasets. We used pretrained Codebert from Huggingface, specifically
model “microsoft/codebert-base”. Concerning the tunable neural network architectures, we used three
fully connected layers for the FNN, a recurrent layer followed by a fully connected layer for the LSTM,
and three graph convolutional layers interleaved by batch normalization for the GNN. All neural models
were trained for 50 epochs using the AdamW optimizer with an initial learning rate of 0.001. These
were implemented using PyTorch v2.4.1. For SVM, RF, LR, KNN, GB, and XGB we used the default
parameters from scikit-learn v1.5.1.

Source codes, bytecodes, runtimes, and opcodes were treated as text, while ASTs and CFGs were
treated as graphs. Each modality was processed by a subset of the models we evaluated.

For text modalities, CodeBERT processed raw text, LSTM worked with Stanford’s GloVe 100d word
embeddings, and the remaining models utilized a Term Frequency-Inverse Document Frequency (TF-IDF)
representation with 256 features. TF-IDF is a commonly used method for transforming text data into
numerical features based on the importance of terms, which is effective for traditional ML models
like SVM, RF, LR, KNN, GB, and XGB. LSTM, on the other hand, uses word embeddings to capture
the semantic relationships and context of words, which is crucial for models that rely on sequential
and contextual information in text data. Finally, CodeBERT is pre-trained on a large corpus of code,
and it operates directly on the raw text, leveraging its programming language understanding to detect
vulnerabilities in source code.

For graph modalities, we fed to a GNN, along with SVM, RF, LR, KNN, GB, and XGB, a set of
graph features we developed. For ASTs, we captured the general characteristics of each node, such
as the node type, its depth in the tree, the number of children, and a complexity measure (calculated
as the product of depth and number of children). Additionally, we extracted node-specific features:
for ContractDefinition nodes, we extracted contract type and base contracts; for FunctionDefinition



Model
Modality Definition Metric GB KNN LR RF SVM XGB CodeBERT LSTM FNN GNN

Bytecode

Property
Precision 0.82 ± 0.02 0.83 ± 0.02 0.82 ± 0.01 0.84 ± 0.02 0.82 ± 0.01 0.83 ± 0.02 0.81 ± 0.03 0.82 ± 0.00 0.61 ± 0.01 -
Recall 0.80 ± 0.02 0.80 ± 0.01 0.69 ± 0.01 0.80 ± 0.02 0.69 ± 0.01 0.79 ± 0.02 0.71 ± 0.03 0.70 ± 0.00 0.77 ± 0.03 -
F1-score 0.79 ± 0.02 0.79 ± 0.01 0.72 ± 0.01 0.80 ± 0.02 0.72 ± 0.01 0.79 ± 0.02 0.74 ± 0.00 0.74 ± 0.00 0.66 ± 0.01 -

SWC
Precision 0.87 ± 0.01 0.91 ± 0.01 0.92 ± 0.00 0.91 ± 0.01 0.92 ± 0.00 0.90 ± 0.02 0.91 ± 0.00 0.91 ± 0.00 0.78 ± 0.05 -
Recall 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.84 ± 0.00 0.84 ± 0.00 0.86 ± 0.01 -
F1-score 0.83 ± 0.01 0.85 ± 0.01 0.86 ± 0.00 0.85 ± 0.01 0.86 ± 0.00 0.85 ± 0.02 0.86 ± 0.00 0.86 ± 0.00 0.79 ± 0.03 -

Opcode

Property
Precision 0.78 ± 0.06 0.86 ± 0.07 0.26 ± 0.03 0.85 ± 0.07 0.22 ± 0.02 0.84 ± 0.07 0.58 ± 0.20 0.45 ± 0.03 0.37 ± 0.00 -
Recall 0.76 ± 0.07 0.79 ± 0.06 0.99 ± 0.01 0.81 ± 0.04 1.00 ± 0.01 0.81 ± 0.04 0.72 ± 0.10 0.72 ± 0.00 0.70 ± 0.00 -
F1-score 0.75 ± 0.05 0.80 ± 0.06 0.40 ± 0.03 0.81 ± 0.05 0.36 ± 0.02 0.81 ± 0.04 0.61 ± 0.17 0.54 ± 0.02 0.48 ± 0.00 -

SWC
Precision 0.76 ± 0.05 0.88 ± 0.02 0.88 ± 0.02 0.88 ± 0.02 0.88 ± 0.02 0.86 ± 0.05 0.82 ± 0.00 0.30 ± 0.00 0.84 ± 0.03 -
Recall 0.74 ± 0.07 0.80 ± 0.02 0.80 ± 0.02 0.80 ± 0.02 0.80 ± 0.02 0.78 ± 0.05 0.82 ± 0.00 0.86 ± 0.00 0.87 ± 0.02 -
F1-score 0.73 ± 0.06 0.82 ± 0.02 0.82 ± 0.02 0.82 ± 0.02 0.82 ± 0.02 0.80 ± 0.05 0.82 ± 0.00 0.45 ± 0.00 0.85 ± 0.03 -

Runtime

Property
Precision 0.82 ± 0.02 0.84 ± 0.02 0.82 ± 0.01 0.84 ± 0.02 0.82 ± 0.01 0.84 ± 0.02 0.80 ± 0.06 0.82 ± 0.00 0.60 ± 0.01 -
Recall 0.80 ± 0.02 0.81 ± 0.02 0.69 ± 0.01 0.81 ± 0.01 0.69 ± 0.01 0.80 ± 0.01 0.70 ± 0.00 0.70 ± 0.00 0.78 ± 0.03 -
F1-score 0.79 ± 0.02 0.80 ± 0.01 0.72 ± 0.01 0.81 ± 0.01 0.72 ± 0.01 0.80 ± 0.02 0.73 ± 0.03 0.74 ± 0.00 0.66 ± 0.01 -

SWC
Precision 0.88 ± 0.01 0.91 ± 0.01 0.92 ± 0.00 0.92 ± 0.01 0.92 ± 0.00 0.91 ± 0.01 0.91 ± 0.00 0.91 ± 0.00 0.79 ± 0.03 -
Recall 0.84 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.84 ± 0.01 0.84 ± 0.00 0.84 ± 0.00 0.86 ± 0.02 -
F1-score 0.84 ± 0.01 0.85 ± 0.01 0.86 ± 0.00 0.86 ± 0.01 0.86 ± 0.00 0.86 ± 0.01 0.86 ± 0.00 0.86 ± 0.00 0.79 ± 0.02 -

Source

Property
Precision 0.83 ± 0.02 0.85 ± 0.01 0.83 ± 0.01 0.86 ± 0.02 0.83 ± 0.01 0.85 ± 0.01 0.80 ± 0.06 0.62 ± 0.00 0.63 ± 0.01 -
Recall 0.82 ± 0.01 0.83 ± 0.01 0.77 ± 0.02 0.83 ± 0.01 0.77 ± 0.01 0.82 ± 0.01 0.70 ± 0.00 0.70 ± 0.00 0.83 ± 0.03 -
F1-score 0.81 ± 0.01 0.82 ± 0.01 0.77 ± 0.01 0.82 ± 0.01 0.78 ± 0.01 0.81 ± 0.01 0.73 ± 0.03 0.64 ± 0.00 0.70 ± 0.02 -

SWC
Precision 0.88 ± 0.01 0.90 ± 0.01 0.92 ± 0.00 0.91 ± 0.01 0.92 ± 0.00 0.90 ± 0.01 0.91 ± 0.00 0.91 ± 0.00 0.79 ± 0.01 -
Recall 0.83 ± 0.01 0.83 ± 0.02 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.84 ± 0.00 0.84 ± 0.00 0.84 ± 0.03 -
F1-score 0.83 ± 0.01 0.85 ± 0.01 0.86 ± 0.00 0.86 ± 0.01 0.86 ± 0.00 0.85 ± 0.01 0.86 ± 0.00 0.86 ± 0.00 0.79 ± 0.01 -

AST

Property
Precision 0.74 ± 0.02 0.72 ± 0.02 0.69 ± 0.02 0.76 ± 0.02 0.71 ± 0.02 0.75 ± 0.02 - - - 0.21 ± 0.00
Recall 0.80 ± 0.02 0.78 ± 0.02 0.76 ± 0.02 0.81 ± 0.02 0.78 ± 0.02 0.80 ± 0.02 - - - 1.00 ± 0.00
F1-score 0.70 ± 0.02 0.71 ± 0.02 0.68 ± 0.02 0.73 ± 0.02 0.70 ± 0.02 0.72 ± 0.02 - - - 0.33 ± 0.00

SWC
Precision 0.74 ± 0.01 0.76 ± 0.06 0.74 ± 0.01 0.77 ± 0.01 0.74 ± 0.01 0.77 ± 0.01 - - - 0.19 ± 0.00
Recall 0.74 ± 0.01 0.70 ± 0.09 0.74 ± 0.01 0.78 ± 0.01 0.74 ± 0.01 0.78 ± 0.01 - - - 1.00 ± 0.00
F1-score 0.64 ± 0.01 0.62 ± 0.02 0.64 ± 0.01 0.66 ± 0.01 0.64 ± 0.01 0.66 ± 0.01 - - - 0.32 ± 0.00

CFG

Property
Precision 0.79 ± 0.03 0.81 ± 0.03 0.78 ± 0.03 0.84 ± 0.03 0.77 ± 0.03 0.81 ± 0.03 - - - 0.23 ± 0.00
Recall 0.77 ± 0.03 0.76 ± 0.02 0.76 ± 0.03 0.77 ± 0.02 0.77 ± 0.03 0.77 ± 0.03 - - - 1.00 ± 0.00
F1-score 0.75 ± 0.02 0.75 ± 0.02 0.74 ± 0.02 0.78 ± 0.02 0.74 ± 0.02 0.76 ± 0.02 - - - 0.37 ± 0.00

SWC
Precision 0.93 ± 0.02 0.93 ± 0.01 0.96 ± 0.00 0.97 ± 0.00 0.95 ± 0.00 0.97 ± 0.01 - - - 0.23 ± 0.00
Recall 0.89 ± 0.01 0.89 ± 0.01 0.87 ± 0.00 0.89 ± 0.00 0.88 ± 0.00 0.89 ± 0.01 - - - 1.00 ± 0.00
F1-score 0.88 ± 0.02 0.89 ± 0.01 0.90 ± 0.00 0.91 ± 0.00 0.90 ± 0.00 0.91 ± 0.01 - - - 0.35 ± 0.00

Multimodal

Property
Precision 0.84 ± 0.02 0.84 ± 0.02 0.65 ± 0.02 0.86 ± 0.02 0.66 ± 0.02 0.86 ± 0.02 - - 0.63 ± 0.02 -
Recall 0.87 ± 0.02 0.82 ± 0.02 0.89 ± 0.01 0.86 ± 0.01 0.89 ± 0.01 0.87 ± 0.02 - - 0.81 ± 0.03 -
F1-score 0.84 ± 0.02 0.81 ± 0.02 0.73 ± 0.02 0.84 ± 0.01 0.74 ± 0.02 0.85 ± 0.01 - - 0.69 ± 0.02 -

SWC
Precision 0.88 ± 0.01 0.91 ± 0.01 0.92 ± 0.00 0.91 ± 0.01 0.92 ± 0.00 0.90 ± 0.01 - - 0.82 ± 0.02 -
Recall 0.82 ± 0.02 0.84 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 - - 0.85 ± 0.00 -
F1-score 0.83 ± 0.01 0.86 ± 0.01 0.86 ± 0.00 0.86 ± 0.01 0.86 ± 0.00 0.85 ± 0.01 - - 0.81 ± 0.01 -

Table 2
Model performance across modalities and labelling for CodeSmells (highest score per modality in bold).

nodes, we captured function name, visibility, state mutability, and control structures (e.g., loops and
conditionals); for VariableDeclaration nodes, we gathered data on visibility, storage location, and
mutability. We also handled Mapping and BinaryOperation nodes. Similarly, each node in the CFG was
characterized by general and CFG-specific features. General features included a block identifier, a list of
opcode values, the number of opcodes in the block, and the number of successors (outgoing edges) to
describe the control flow. CFG-specific features captured the control flow type, loop-related, arithmetic
operations, and branching features, indicating the node’s presence and type of loops or branches.

We propose a first multimodal investigation to explore the potential of leveraging multiple modalities
simultaneously. As a case study, we processed source code and bytecode. For this early-stage exploration,
we employed a simple approach by concatenating the TF-IDF representations of the individual modalities.
Thus, we test the multimodal approach on the models that leverage TF-IDF. This approach is scalable
to more multimodal combinations and could be refined in future work by exploring different ways
of combining representations. We evaluated the models using standard metrics for multiclass and
multilabel tasks, including precision, recall, and F1-score. These metrics were selected for their ability to
provide a comprehensive view of model performance, especially in the context of imbalanced datasets.
To ensure a more reliable analysis, we performed a 5-fold cross-validation and reported our results in
terms of average and variance across the folds.



4. Results and Insights

Preliminary experiments exhibited poor performance, primarily due to the presence of many outliers,
making it challenging to learn effectively from the entire dataset. We initially struggled to achieve
satisfactory metrics because of the multilabel nature of the classification problem and the highly
imbalanced class distribution. To address this issue, we analyzed each subset of the dataset independently.
However, we acknowledge that the CGT dataset is relatively small for effectively training an ML
algorithm, especially when focusing on individual subsets. These challenges rendered learning on some
of the sets impractical and resulted in outcomes barely surpassing random guessing for others. We
report our extensive results in the supplementary material linked in the code repository. The most
noteworthy results were obtained on the largest set available within CGT, "CodeSmells," discussed in
this section. These results are particularly significant given the decent amount of available data and
balance, influencing the outcomes of experiments on other sets.

The CodeSmells dataset comprises 551 source codes, 551 bytecodes, and 504 runtimes. It allows for
generating 103 opcodes, 287 ASTs, and 470 CFGs 6. It is characterized by 20 "Property" labels mapped to
10 more general items in the SWC taxonomy (see Table 1 for details). Since DASP is more general than
SWC, we report results only for the "Property" (fine-grained) and SWC (coarse) labels in Table 2. The
evaluation reveals that, for most modalities and models, the metrics associated with the SWC labelling
are significantly higher than those related to the "Property" labelling. This indicates that a coarser
ground truth enables better learning outcomes, as models find handling more fine-grained labelling
of vulnerabilities challenging. Under the "Property" labelling, ensemble models such as RF, GB, and
XGB consistently emerge as the top performers across various modalities. Their consistently strong
performance underscores the robustness and adaptability to different feature representations, making
them a reliable choice for fine-grained detection. Conversely, DL models demonstrate remarkable
performance for most modalities’ under the SWC labelling. They exhibit a steep increase in all metrics
compared to the finer "Property" labelling, highlighting their ability to capture broader patterns when
the labelling is less granular.

Regarding the graph modalities—AST and CFG—the GNN achieves perfect recall, successfully captur-
ing all positive instances. However, this comes at the expense of very low precision, leading to subpar
F1-scores. The GNN’s aggressive approach in predicting positives results in numerous false positives,
making it less suitable for tasks that require a balanced classification approach. Overall, performance
on AST data is the most modest, even with the coarser SWC labelling. In contrast, CFGs yield more
promising results, indicating that graph representations hold potential for this task, but probably require
a more complex GNN architecture to achieve better results.

When comparing results across modalities, similar performance trends emerge. This consistency
suggests that each modality contains sufficient information for effective classification. The choice of
modality can thus be tailored based on the task’s specific requirements, balancing the data’s richness
with the complexity of interpretation. Analyzing multimodal data reveals that incorporating various
data types significantly enhances the performance of all models, especially for fine-grained "Property"
labelling. This improvement is particularly noticeable in ensemble models like RF and XGB, which
experience substantial increases in F1-scores by integrating diverse features. This demonstrates the
potential of multimodal integration in improving classification.

Overall, the findings highlight the importance of selecting appropriate models based on the data
modality and the granularity of labelling. Ensemble models emerge as the most consistently strong
performers across all modalities for fine-grained labelling. In contrast, DL models are the top performers
with coarse SWC labelling, leveraging their capacity to model broad patterns effectively. In fine-
grained labelling scenarios, multimodal data generally enhances model performance significantly,
suggesting that integrating diverse features is a promising strategy. In future work, we plan to explore
various approaches to address class imbalance, including data augmentation [35] and other upsampling

6Generating opcodes, ASTs, and CFGs required compilation, but many CGT dataset source codes encountered fatal errors,
preventing the generation of these modalities. The errors depended on the ’solc’ version, the operation (opcodes or ASTs),
and Slither’s internal processing, reducing the available data for the added modalities.



techniques. Additionally, we will investigate different GNN architectures to achieve improved results.

5. Conclusion

Contrary to formal verification methods, ML cannot guarantee the correctness of the detection. However,
a learning algorithm’s flexibility allows it to overcome limits such as detection speed, the number of
vulnerabilities considered, and different versions of the same vulnerability. Moreover, it can provide a
good solution to mitigate the high false positive rates reported by static analyzers. Our results open new
avenues for researching multimodal handling in ML for vulnerability detection. Future work will focus
on fine-tuning these models, exploring their explainability [36], and investigating hybrid approaches,
particularly in multimodal settings. Additionally, enhancing dataset balance and exploring advanced
techniques for imbalanced classification, like data augmentation, is crucial to improving detection
accuracy for less common vulnerabilities. To address the limitations identified in this study, we plan to
collect a new data set that mitigates the issues of existing ones, providing a more robust foundation for
training and evaluating models.
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