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Abstract
Extracting logical rules from ensembles of symbolic learning models, and especially from ensembles of
decision trees, is a very well-known discipline, and several methods and algorithms have been proposed
for its solution. However, the existing approaches are characterized by being purely statistical. In this
paper, we discuss the problem of systematically extracting minimal logical rules from ensembles of trees
from both a theoretical and an algorithmic point of view.
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1. Introduction

In sharp opposition to the proliferation of machine learning models used to approach all range
of typical artificial intelligence problems, from classification, to regression, to reinforcement
learning, the universal concept linked to the interpretation and the explanation of such models
is that of rule. As a matter of fact, it can be said that all different statistical learning models are
different methods for implicit or explicit rule extraction from data.

Unsurprisingly, the idea of expressing the behaviour of a data-driven artificial intelligent
agent in terms of rules is extremely pervasive. On the one side, learning models are usually
separated into symbolic ones, such as decision trees or linear regressions, sub-symbolic ones,
such as neural networks, and mixed ones, such as ensembles of trees. On the other side, methods
for explaining learning models are classified into global ones, that are focused on the model as a
whole, and local ones, focused on the behaviour of a model on a specific instance. Numerous
literature surveys on explainable artificial intelligence and interpretable machine learning have
been conducted (e.g., see [1, 2, 3]).

With symbolic learning methods we represent data and relationships using symbolic struc-
tures. Decision trees [4] are a classic example of symbolic learning models, where the tree
branches typically represent formulas of propositional logic. Despite their effectiveness, de-
cision trees suffer from a limited ability to generalize to new data. To address such an issue,
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ensembles of independent decision trees, known as decision forests, are commonly used to im-
prove the generalization ability of single trees. Decision forests are symbolic in nature, but they
include a functional component to amalgamate the output of single trees, and can be therefore
classified as mixed symbolic/sub-symbolic techniques; the most famous algorithm for decision
forest learning, namely random forest [5], produces decision forests for classification/regression
in which the aggregation function is simple majority.

The development of global explanation methods for decision forests is paramount, and several
solutions have been proposed in the past, including Partial Dependence Plots [6], Accumulated
Local Effects Plots [7], global surrogate models [8], and SHapley Additive exPlanations (SHAP) [9].
In terms of rule extraction from decision forests, the relevant methods include the celebrated
Simplified Tree Ensemble Learner (STEL) [10] (recently extended to the modal case in [11]), and
several heuristic techniques [12, 13]. Two common traits characterize this plethora of proposals:
first, global rules from decision forests are extracted in statistical form, and, second, these
methods are seldom integrated into widely used machine learning portfolios and frameworks.

We initiate a systematic study of purely logical global rules extraction from decision forests.
The language of standard decision forest is propositional; propositions range from simple asser-
tions of the type 𝐴 ◁▷ 𝑎, where 𝐴 is an attribute, 𝑎 is a constant, and ◁▷ is a comparison operator
(e.g., fever is over 38 degrees), to complex (yet atomic) sentences, of the type 𝑓(𝐴1, . . . , 𝐴𝑘) ◁▷ 𝑎,
where 𝐴1, . . . , 𝐴𝑘 are attributes and 𝑓 is an (arbitrary) function applied to them (e.g., the aver-
aged vibration of sensors 𝐴 and 𝐵 is below 100 Hertz — examples of such propositions emerge,
among others, in oblique decision trees and forests [14]). In any case, atomic propositions form
a simple theory 𝒯 (e.g., fever is over 38 degrees implies fever is over 37 degrees); this is ignored
during the learning phase, which generates a certain amount of redundancy in learnt models.
In the simple and representative case of decision forests for classification, that is, learning a
class 𝐿 from a dataset ℐ , given a decision forest 𝐹 learnt from ℐ we define a strong class rule for
it as an object of the type 𝜙 ⇔ 𝐿, where 𝐿 is a class and 𝜙 is a propositional formula, such that
𝐹 classifies an instance 𝐼 ∈ ℐ as 𝐿 if and only if 𝐼 satisfies 𝜙. Obviously, it is to be expected
that useful class rules have relatively short antecedent, and since the latter is a propositional
formula, it can be minimized. Minimization of propositional formulas is a very well-known
problem. In the most common case the size of a formula 𝜙, denoted by |𝜙|, is defined as the
number of its symbols, and the minimization problem asks, given a propositional formula 𝜙:
which is a formula 𝜙′, equivalent to 𝜙 (denoted 𝜙′ ≡ 𝜙), and minimal in size? In its decision
version, the problem becomes, given 𝜙 and a number 𝑞: does there exists a formula 𝜙′, such that
|𝜙′| ≤ 𝑞 and 𝜙′ ≡ 𝜙? This problem is Σ2

𝑝-complete, and there exist a number of approaches for
it [15].

In this paper we ask the question, given a decision forest 𝐹 and a class 𝐿: which is a strong
class rule for 𝐿 whose antecedent 𝜙 is minimal in size? In its decision version, given a number
𝑞, it becomes: is there a strong class rule for 𝐿 whose antecedent 𝜙 is such that |𝜙| ≤ 𝑞?
Obtaining small class rules differs from pure logical minimization in two key aspects. First,
minimization of propositional formula is usually not intended modulo a theory 𝒯 , but, in general,
classic minimization methods and techniques can be adapted to this case. Second, in our case
minimization does not need to preserve logical equivalence, but only equivalence modulo the
set of instances ℐ on which the original forest was learnt. We shall see that this problem can be



very hard in terms of computational complexity, and it makes sense to consider other (ideally,
simpler) versions of it. We define the concept of right weak class rule, (resp., left weak class rule)
that is, a rule of the type 𝜙 ⇒ 𝐿 (resp., 𝜙 ⇐ 𝐿) such that if 𝐼 ∈ ℐ satisfies 𝜙 (resp., 𝐹 classifies
𝐼 as 𝐿) then 𝐹 classifies 𝐼 as 𝐿, (resp., that if 𝐼 ∈ ℐ satisfies 𝜙), and we ask the question, given
a decision forest 𝐹 and a class 𝐿: which is a right (resp., left) weak class rule for 𝐿 whose
antecedent 𝜙 is minimal (resp., non-trivially maximal) in size? Or, in its decision version, given
also a number 𝑞: is there a right (resp., left) weak class rule for 𝐿 whose antecedent (resp.,
non-trivial antecedent) 𝜙 is such that |𝜙| ≤ 𝑞 (resp., |𝜙| ≥ 𝑞)?

2. Decision Trees, Decision Forests, and Class Formulas

Definition 1. A dataset is a set of 𝑚 instances ℐ = {𝐼1, . . . , 𝐼𝑚}, each one of which is described
by the values of 𝑛 attributes 𝒜 = {𝐴1, . . . , 𝐴𝑛}.

Without lack of generality we assume that the value of each attribute in an instance is a real
number. Several problems are usually associated with datasets; in the case of supervised learning,
each instance is also associated to a label (or class) 𝐿 ∈ ℒ, and a dataset is termed labelled.
Given a labelled dataset ℐ , supervised classification consists of synthesizing an algorithm (a
classifier) that is able to classify the instances of an unlabelled dataset 𝒥 whose instances are
defined on the same set of attributes.

In the symbolic context, instances are seen as logical models. To help this interpretation
one takes into consideration that datasets are naturally associated to a logical vocabulary 𝒫 of
propositional letters, from which formulas are built. In the most general case, we have

𝒫 = {(𝑓(𝐴1, . . . , 𝐴𝑘) ◁▷ 𝑎) | 𝑓 ∈ ℱ , 𝑎 ∈ R, ◁▷ ∈ {<,≤,=,≥, >}},

whereℱ is a set of suitable feature extraction functions. To a dataset ℐ , we associate its vocabulary
𝒫 and a (possibly empty) theory 𝒯 , that is, a set of propositional formulas of the type 𝑝𝑖 → 𝑝𝑗 ,
where 𝑝𝑖, 𝑝𝑗 ∈ 𝒫 , that expresses semantic constraints between propositional letters (e.g., 𝐴 > 5
implies 𝐴 > 4). In the following, we write 𝐼 |= 𝜙 to denote that a propositional formula 𝜙 is
satisfied by 𝐼 .

Definition 2. Let ℒ be a set of classes and 𝒫 a finite set of propositional letters. Then, a decision
tree (on ℒ) is a tuple

𝜏 = ⟨𝑉,𝐸, 𝑙, 𝑒⟩,

where ⟨𝑉,𝐸⟩ is a full binary directed tree, 𝑙 is a leaf-labelling function that assigns a class
from ℒ to each leaf node in 𝑉 , and 𝑒 is an edge-labelling function that assigns a decision from
{𝑝,¬𝑝 | 𝑝 ∈ 𝒫} to each edge in 𝐸, in such a way that two siblings always have opposite decisions.
A decision forest 𝐹 = {𝜏1, . . . , 𝜏𝑧} (on ℒ) is a set of 𝑧 decision trees (on ℒ).

A decision tree/forest is learnt from a dataset ℐ based on its vocabulary 𝒫 (the language of the
tree/forest). An instance is classified by a tree by progressively checking the truth value of each
proposition on a path (and we denote with 𝜏(𝐼) the class assigned to an instance 𝐼 by 𝜏 ), and
by a forest (𝐹 (𝐼)) by systematically querying each tree individually and then aggregating their



decisions; among other possibilities, a typical aggregation function is simple majority, which is
assumed here.

Definition 3. Given a decision tree 𝜏 on ℒ and a class 𝐿 ∈ ℒ, then: (𝑖) given and a path 𝜋 in 𝜏
from the root to a leaf labeled with 𝐿 (an L-path), the conjunction of all decisions on 𝜋 is called
L-path tree formula, and it is denoted by 𝜙𝐿

𝜋 , and (𝑖𝑖) the disjunction of all 𝐿-path formulas in
𝜏 is called L-class tree formula (𝜙𝐿

𝜏 ). Given a decision forest 𝐹 on ℒ with 𝑧 trees, and a class
𝐿 ∈ ℒ, then: (𝑖) given a collection 𝜏𝑖1 , . . . , 𝜏𝑖𝑡 ∈ 𝐹 and one 𝐿-path 𝜋𝑖𝑗 (1 ≤ 𝑗 ≤ 𝑡) per tree
𝜏𝑖𝑗 , the conjunction of all 𝐿-path tree formulas 𝜙𝐿

𝜋𝑖1
, . . . , 𝜙𝐿

𝜋𝑖1
is called partial L-path forest

formula (𝜙𝐿
𝜋𝑖1

,...,𝜋𝑖𝑡
); (𝑖𝑖) if 𝑡 > 𝑧/2, then 𝜙𝐿

𝜋𝑖1
,...,𝜋𝑖𝑡

is called L-path forest formula; and (𝑖𝑖𝑖) the
disjunction of all possible 𝐿-path forest formulas is called L-class forest formula (𝜙𝐿

𝐹 ).

3. Rules from Decision Forests

Definition 4. Given a decision forest 𝐹 , learnt from a dataset ℐ , on ℒ, and a class 𝐿 ∈ ℒ, a
strong 𝐿-class rule is an object of the type 𝜙 ⇔ 𝐿, where 𝜙 (the antecedent) is a propositional
formula in the language of 𝐹 , such that, for every 𝐼 ∈ ℐ , 𝐼 |= 𝜙 if and only if 𝐹 (𝐼) = 𝐿, a right
weak 𝐿-class rule is an object of the type 𝜙 ⇒ 𝐿 such that 𝐼 |= 𝜙 implies 𝐹 (𝐼) = 𝐿, and a left
weak 𝐿-class rule is an object of the type 𝐿 ⇒ 𝜙 such that 𝐹 (𝐼) = 𝐿 implies 𝐼 |= 𝜙.

Given a decision forest 𝐹 on ℒ, a class 𝐿 ∈ ℒ, and the 𝐿-class forest formula 𝜙𝐿
𝐹 , 𝜙𝐿

𝐹 ⇔ 𝐿 is
a (trivial) strong 𝐿-class rule. In practical terms, it will likely be very redundant, due to the
fact that decision trees and forest are general learnt via sub-optimal learning algorithms (recall
that the problem of extracting a minimal decision tree is NP-hard, and sub-optimal, polynomial
algorithms are commonly used for learning), and the fact that the theory 𝒯 underlying the
language is ignored during learning. Thus, given a decision forest 𝐹 on ℒ, learnt from a dataset
ℐ , and a class 𝐿 ∈ ℒ, we are interested in finding a minimal strong 𝐿-class rule, that is, a strong
𝐿-class rule 𝜙 ⇔ 𝐿 such that, for every strong class rule 𝜙′ ⇔ 𝐿 so that 𝜙 ≡ℐ

𝒯 𝜙′ (i.e., so that
𝜙 and 𝜙′ are equivalent modulo 𝒯 at least with respect to the instances in ℐ), it is the case that
|𝜙| ≤ |𝜙′|.

One way to assess the complexity of the problem of finding minimal strong rules is to study
its decision version, that is: given a decision forest 𝐹 , learnt from a given dataset ℐ , on ℒ, a
class 𝐿 ∈ ℒ, and a number 𝑞, is there a strong 𝐿-class rule 𝜙 ⇔ 𝐿 such that |𝜙| ≤ 𝑞? Given
that the size of the input of this problem is the number of symbols of 𝐹 (denoted by |𝐹 |) plus
the number of instances in ℐ (|ℐ|) and the size of the representation of 𝑞 (|𝑞|), we have the
following result.

Theorem 1. Given a decision forest 𝐹 , learnt from a dataset ℐ , on ℒ, a class 𝐿 ∈ ℒ, a theory 𝒯 ,
and a number 𝑞, the problem of establishing if there exists a strong 𝐿-class rule 𝜙 ⇔ 𝐿 such that
|𝜙| ≤ 𝑞 is in NEXPTIME.

Proof[sketch]. An (DNF) antecedent 𝜙 of size less than or equal to 𝑞 can be guessed. Then, for
each instance 𝐼 ∈ ℐ , 𝐼 is checked against both 𝐹 and 𝜙: if 𝐹 (𝐼) = 𝐿 (resp., not 𝐿) and 𝐼 |= 𝜙



(resp., 𝐼 ̸|= 𝜙), then 𝐼 is marked. If all instances in ℐ end up being marked, then 𝜙 ⇒ 𝐹 is a
strong 𝐿-class rule. The complexity of this process is polynomial in |𝐹 | and |ℐ|, but exponential
in |𝑞|, and the value of the minimal 𝑞 for which a strong 𝐿-class rule exist may be exponential
in |𝐹 |. □
Since extracting a minimal strong class rule may turn out to be impractical, we turn our attention
to weak rules. Given a decision forest 𝐹 , learnt on a dataset ℐ , on ℒ, a class 𝐿 ∈ ℒ, and a
𝐿-path forest formula 𝜙𝐿

𝜋𝑖1
,...,𝜋𝑖𝑡

, 𝜙𝐿
𝜋𝑖1

,...,𝜋𝑖𝑡
⇒ 𝐿 is a (trivial) right weak 𝐿-class rule whose

antecedent may exhibit the same kind of redundancy and can be minimized as in the previous
case. Similarly, ⊤ ⇐ 𝐿 is a (trivial) left weak 𝐿-class rule whose antecedent can be maximized;
in this case, however, one is interested in non-trivial maximal antecedents.

Theorem 2. Given a decision forest 𝐹 on ℒ, a class 𝐿 ∈ ℒ, a theory 𝒯 , and a number 𝑞, the
problem of establishing if there exists a right weak 𝐿-class rule 𝜙 ⇒ 𝐿 such that |𝜙| ≤ 𝑞 is in NP,
and the problem of establishing if there exists a non-trivial left weak 𝐿-class rule 𝐿 ⇒ 𝜙 such that
|𝜙| ≥ 𝑞 is in NEXPTIME.

Proof[sketch]. As for right weak 𝐿-class rules, a (term) antecedent 𝜙 of size less than or equal
to 𝑞 can be guessed. Then, for each instance 𝐼 ∈ ℐ , 𝐼 is checked against both 𝐹 and 𝜙: if 𝐼 ̸|= 𝜙,
or 𝐼 |= 𝜙 and 𝐹 (𝐼) = 𝐿, then 𝐼 is marked. If all instances in ℐ end up being marked, then
𝜙 ⇒ 𝐹 is a weak 𝐿-class rule. The complexity of this process is polynomial in |𝐹 |, |ℐ|, but
exponential in |𝑞|; however, the value of the minimal 𝑞 for which a right weak 𝐿-class rule exist
is polynomial in |𝐹 |. As for left weak 𝐿-class rules, a (DNF) antecedent 𝜙 of size grater than
or equal to 𝑞 can be guessed. Then, we first check that 𝜙 is non-trivial, that is, there are no
repeated literals in any term, no term is unsatisfiable, and no terms implies any other term.
Then, for each instance 𝐼 ∈ ℐ , 𝐼 is checked against both 𝐹 and 𝜙: if 𝐹 (𝐼) ̸= 𝐿, or 𝐹 (𝐼) = 𝐿
and 𝐼 |= 𝜙, then 𝐼 is marked. If all instances in ℐ end up being marked, then 𝜙 ⇒ 𝐹 is a weak
𝐿-class rule. The complexity of this process is polynomial in |𝐹 | and |ℐ|, but exponential in |𝑞|,
and the value of the minimal 𝑞 for which a left weak 𝐿-class rule exist may be exponential in
|𝐹 |. □

4. Conclusions

We started a systematic study of logical methods for rule extraction from decision forests, a
well-known classification model. Extracting rules from decision forests is a well-known problem,
but existing solutions are statistical and data-driven. In our work, we apply known logical
algorithms to rule extraction, contributing to bridging the gap between logic and machine
learning.
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