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Abstract
Translating natural language (NL) into logical formalisms like First-Order Logic (FOL) has long been a challenge
across multiple disciplines, including mathematics, computer science, and education. Traditional computational
linguistics methods have struggled with this task due to the complexity and ambiguity of natural language.
However, advancements in Natural Language Processing (NLP), particularly the introduction of Large Language
Models (LLMs), have opened up new possibilities for tackling this challenge. Despite their potential, a systematic
approach to evaluating the performance of LLMs in NL-to-FOL translation is still lacking. In this study, we
take a first step towards filling in this gap. We examine a large dataset based on students’ efforts in formalizing
natural language statements from the book “Language, Proof, and Logic”. Based on this dataset, we propose a
preliminary evaluation pipeline to assess LLM performance in NL-to-FOL translation tasks, considering both
syntactic and semantic aspects. We then apply this pipeline to evaluate two recent LLMs, Meta’s Llama 3.1 (8B)
and Google DeepMind’s Gemma 2 (9B). Our findings validate the proposed approach, revealing key similarities
and differences between LLM-generated and student-produced formulas, and provide valuable insights into the
current capabilities of LLMs in this domain.
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1. Introduction

Translating natural language (NL) into logical formalisms like First-Order Logic (FOL) is a longstanding
challenge that spans multiple disciplines, including mathematics, computer science, and education. In
mathematics, this translation facilitates automated theorem proving [1], in computer science, it helps in
developing systems that approximate human reasoning [2], in engineering, it supports domain experts
with the definition of formal requirements that should be verified at runtime by a systems [3], and in
education, it gives a precious support to analyze common mistakes made by students [4].

Historically, traditional computational linguistics methods have attempted to tackle this task, but
with limited success, often struggling to maintain accuracy and consistency when dealing with com-
plex or ambiguous sentences (see, for instance, the survey paper [5]). For example, in the domain
of coreference resolution—the task of determining when different expressions in a text refer to the
same entity—traditional methods frequently fall short in cases involving pronoun ambiguity or nested
references. However, recent advancements in natural language processing (NLP), particularly with the
advent of large language models (LLMs), offer new possibilities. Models such as GPT and BERT have
demonstrated an exceptional capacity in processing and generating natural language texts, excelling in
tasks like translation, summarization, sentiment analysis, question answering, and even code generation
[6]. Their ability to handle context and perform sophisticated reasoning makes them promising candi-
dates also for translating natural language statements into logic formulas. Indeed, several LLM-based
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Table 1
Exemplary instances from the dataset

Student_id Sentence Answer N_attempt Correct

1 'a' is a cube 𝐶𝑢𝑏𝑒(𝑎) 1 True
1 'b' is smaller than 'a' 𝑆𝑚𝑎𝑙𝑙𝑒𝑟(𝑏, 𝑎) 1 True
2 'b' is smaller than 'a' 𝐿𝑎𝑟𝑔𝑒𝑟(𝑏, 𝑎) 1 False
2 'b' is smaller than 'a' 𝐿𝑎𝑟𝑔𝑒𝑟(𝑎, 𝑏) 2 True
... ... ... ... ...
1756 Nothing is between objects of

shapes other than its own
***omitted as requested by
the dataset authors***

4 True

methods have recently been proposed for this task [7, 8, 9, 10]. The diversity of these methods and the
datasets used highlights the need for standardized benchmarks to systematically and comparably assess
the effectiveness of the models. However, to the best of our knowledge, no such systematic approach
has yet been proposed.

Our study represents a first step in this direction. We examine a large dataset derived from research
on the challenges students face when formalizing natural language statements into FOL [11, 12, 13, 14],
as outlined in the book “Language, Proof, and Logic” [15]. Based on this dataset, we propose an
initial pipeline to evaluate the performance of LLMs in translating natural language phrases into first-
order logic formulas, considering both syntactic and semantic aspects. We then apply this pipeline
to assess the performance of the two recent LLMs Meta’s LLM Llama 3.1 (8B) [16, 17] and Google
DeepMind’s Gemma 2 (9B) [18]. While our work is not yet intended as a full-fledged benchmark, the
experimental results validate the proposed approach and highlight key similarities and differences
between LLM-generated formulas and those produced by students, offering valuable insights into the
current capabilities of LLMs in this domain. These findings warrant further exploration and, in addition,
emphasize the need for continued investigation into the interaction between the fields of NLP and
formal methods.

The paper is structured as follows: Section 2 introduces the dataset and preprocessing steps undertaken
for analysis. Section 3 outlines our evaluation pipeline for assessing LLM performance on NL-to-FOL
translation tasks, which is then experimentally evaluated in Section 4. Finally, Section 5 provides
concluding remarks, discusses the limitations of the current study and outlines future research directions.

2. Dataset

The dataset we considered is an extract of the years 2001–2010 from the Grade Grinder Corpus Release
1.0 [11], kindly provided to us privately by the authors. It consists of correct and incorrect answers,
continuously collected through a dedicated tutoring software, from students responding to questions
posed in the book “Language, Proof, and Logic” [15]. Each question involves a natural language utterance
describing a situation in Tarski’s World [19], where students are tasked with formulating a corresponding
First-Order Logic (FOL) expression to encode the given text.

Our extract contains 16,265,166 answers, both correct and incorrect, submitted by 50,608 students.
After a pre-processing phase, each answer includes a student identifier, the logic formula written by the
student, the corresponding natural language phrase, and a Boolean flag indicating whether the answer
is correct. Additionally, each entry contains an attribute indicating the sequential attempt number, as
students may make multiple attempts to answer the same question while interacting with the tutoring
software (see Table 1). Note that there may be more than one correct answer per phrase due to the
equivalence of different logic formulas and the flexibility of the allowed syntax, which includes relations
along with their opposites. This is summarized in Table 2.

Overall, answers refer to 208 distinct natural language phrases, which we categorized along 6 difficulty
levels. To such an extent, based on the work of [13], for each phrase we calculated the percentage of
failed first-attempt answers as well as the so-called stickiness value, i.e., the average number of attempts
made by students before reaching a correct answer. We then performed K-means clustering on these



Table 2
Syntax allowed for the formulas

Relation/arity

Tet/1, Cube/1, Dodec/1, Small/1, Medium/1, Large/1,

SameShape/2, SameSize/2, Larger/2, Smaller/2,

SameCol/2, SameRow/2, Adjoins/2, FrontOf/2,

BackOf/2, RightOf/2, LeftOf/2, =/2, Between/3

Connectives ¬,∧,∨,→,↔

Quantifiers ∃,∀

Constants a, b, c, d, e, f

Variables s, t, u, v, w, x, y, z

Structure ( , )

Table 3
Difficulty levels

Difficulty N. of N. of % Failed Average
level phrases answers first attempts stickiness

super-low 94 8,546,754 5.10 1.11
low 62 4,578,148 13.15 1.30

mid-low 13 810,726 23.53 1.58
mid-high 29 1,857,054 37.89 2.06

high 8 378,221 42.35 2.48
super-high 2 94,263 52.65 3.09

two variables, identifying 6 clusters relying on an instance separation criterion; they are summarized in
Table 3. Note how, overall, the number of phrases decreases as the difficulty level increases. For each
phrase, the ground truth is given by the set of (unique) correctly submitted formulas, a number which
ranges from a minimum of 1 to a maximum of 1150, with an average of 99.

3. NL-to-FOL Evaluation Pipeline

In this section, we provide an account of the pipeline we developed to evaluate natural language to
formula translation, which is summarized in Figure 1. Suppose an LLM is given a natural language
phrase 𝑝, belonging to our considered dataset, that describes a situation in Tarski’s World; in response,
it generates a formal representation of this phrase as a FOL formula 𝜑. To evaluate the syntactic and
semantic correctness of 𝜑, we proceed as follows:

1. The formula 𝜑 is parsed using Python’s Lark library [20], following a specifically designed
FOL grammar describing formulas of Tarski’s World (see Table 2). The parsing may fail, due to
grammar violations. In such case, we rely on a set of hard-coded rules, primarily based on regular
expressions, to identify these kinds of syntax errors:

• Relation/arity: a relation that is not part of the defined syntax or is used with incorrect arity;
• Connectives and quantifiers: non-adherence to the syntax or misuse of a connective (e.g., ∧

connective without one of the conjuncts);
• Constants and variables: non-adherence to the naming conventions;
• Structure: unpaired or misused parentheses;
• Other: residual category for the parsing errors which could not be automatically classified.

At this point, the errors identified in the formula are kept track of, the formula is labeled as both
syntactically and semantically incorrect, and the pipeline ends. Otherwise, if the parsing of 𝜑
succeeds, the formula is passed down to the next point in the pipeline;

2. Relying on Python’s ZSS library [21], we calculate the tree edit distance [22] between 𝜑 and each
possible ground truth for the phrase 𝑝, identifying the most similar formula 𝜓;

3. We evaluate the logical equivalence between 𝜑 and 𝜓 relying on the Z3 theorem prover [23].
Specifically, we verify the unsatisfiability of ¬(𝜑 ↔ 𝜓);

4. If the two formulas are found to be equivalent, 𝜑 is labeled as both syntactically and semantically
correct. Otherwise, if they are non-equivalent, the formula is labeled as syntactically correct but
not semantically correct, and we also output the distance calculated at Point 2., with the idea that
it represents the cost of semantically transforming 𝜑 into 𝜓.



Start: Natural Language Phrase 𝑝

LLM generates FOL formula 𝜙

Parse 𝜙 with Lark (FOL Grammar)

Parsing Successful?
Identify syntax errors
(regular expressions)

Output Errors
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Compute tree edit distance between 𝜙 and ground truths for 𝑝,
selecting as 𝜓 the most similar formula

Check logical equivalence 𝜙↔ 𝜓 using Z3

Equivalent?
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Syntactically
Correct,

Semantically
Incorrect

(Output distance)

Yes

No

Yes

No

Check for syntax errors:
relation/arity, connectives,

variables, structure

Figure 1: Overview of our NL-to-FOL evaluation pipeline

4. Experimental evaluation

In this section, we apply our pipeline and considered dataset to evaluate the LLMs Meta’s Llama 3.1 (8B)
and Google DeepMind’s Gemma 2 (9B). To instruct the models to translate a natural language utterance,
we used the DSPy framework [24] (Prompt 1). For the purpose of this preliminary study, we focus solely
on the first attempts made by students, totaling 14,452,492 answers. This ensures a fair comparison
with the LLMs, which, at present, are not involved in any form of iterative answering process.

Table 4 compares the accuracy of the LLMs in first-attempt formula generation with that of the
average student. Overall, the LLMs achieve better results than the students. The comparison becomes
more interesting when examining performance across different difficulty levels: while the average
student’s accuracy, of course, consistently decreases as the difficulty increases, the LLMs’ performance is
more varied. Llama 3.1 (8B) performs worse than the average student at the super-low and low difficulty
levels, but outperforms at the higher levels. Gemma 2 (9B), while slightly surpassing LLama 3.1 overall,
scores notably low at the Mid-low difficulty level.

Upon closer examination, it was found that among the 12.5% of formulas incorrectly generated
by Llama 3.1 (8B), no exclusively semantic errors were made, as the pipeline had already exited at



Translate/Formalize English sentences into formulae of first −order language.

=== vocabulary to use ===
The vocabulary of the domain , part of a model for a first −order language , must be

the following one:
Constants symbol: lower case character from a to f
Variables symbol: lower case character from s to z

=== Relations to use ===
Each element indicates the name of a relation and its arity (name/arity):
[’Tet/1’, ’Cube/1’, ’Dodec/1’, ’Small/1’, ’Medium/1’, ’Large/1’, ’SameShape/2’,
’SameSize/2’, ’Larger/2’, ’Smaller/2’, ’SameCol/2’, ’SameRow/2’, ’Adjoins/2’,
’FrontOf/2’, ’RightOf/2’, ’LeftOf/2’, ’BackOf/2’, ’Between /3’]
Equality binary relation with symbol: =
Explanation of the relation Between:

Between(x, y, z) means that x is between y and z
Explanation of the relation Larger:

Larger(x, y) means that x is larger than y

=== symbols you MAY USE ===
Equality binary relation with symbol: =
Logical operator symbols: ¬, ∧, ∨ , → , ↔
Quantifier symbols: ∃, ∀

=== symbols you MUST NEVER USE ===
Symbols that are not allowed: " ̸="

=== output constraint ===
The FOL formula is the first element of the output , with the prefix ’𝜙=’.

Prompt 1: Instructions prompted to the LLMs to translate English sentences into FOL.

Table 4
LLMs and average student accuracy on first-attempt

Super-low Low Mid-low Mid-high High Super-high Micro avg

Average student 94.90 86.85 76.47 62.11 57.65 47.35 85.99
Llama 3.1 (8B) 91.49 80.65 84.62 93.10 75.00 100.00 87.50
Gemma 2 (9B) 92.55 85.48 53.85 93.10 87.50 100.00 87.98

the syntax-checking stage. The distribution of syntax error types within these incorrect formulas is
shown in Table 5 (columns labeled with ‘L’). Despite the large percentage of uncategorized syntax errors
(Other), it can be observed that the remaining errors generally involve the incorrect use of connectives
or quantifiers. As for Gemma 2 (9B), exactly 3 formulas, belonging to the 12,02% of the incorrectly
generated ones, passed the syntax check but failed the semantic test, with an average tree edit distance
of 15. Looking again at Table 5 (columns labeled with ‘G’), here the kinds of syntax errors detected are
slightly more variegate, though errors involving connectives and quantifiers remain predominant.

Table 6 considers the agreement between the two LLMs. Notably, in 94.23% of cases, a phrase can
be correctly formalized by at least one model, while in only 5.77% of cases neither model is able to
produce a correct formula. For the 81.25% of the phrases, both models can derive the right formalization.
Regarding the difficulty levels, it is noteworthy that, although the two LLMs share the same accuracy
on the Mid-high level (93.10%, Table 4), they correctly formalize different sets of phrases.

Finally, in [12] it emerges that, for the students, the choice of the logical connective to be used in the
formalization is a critical factor. Specific words, identified in both [12] and [15], have been found to be
linked to this choice and are recognized as common sources of errors [12]. Therefore, in Table 7 we
investigate whether LLMs make more or fewer mistakes than students when restricted to sentences
containing words that are typically associated with errors. The accuracy distributions differ between
the two LLMs and when compared to student results, suggesting that common sources of mistakes for
students do not always apply to the models. Here, a notable case is that of at least (column ‘AL’).



Table 5
Distribution of syntax error types in incorrect LLMs generations, L: Llama 3.1 (8B), G: Gemma 2 (9B)

Super-low Low Mid-low Mid-high High Super-high
L G L G L G L G L G L G

Relation/arity 0.00 0.00 0.00 33.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Connectives and quantifiers 62.50 85.71 33.33 33.33 50.00 50.00 0.00 50.00 50.00 100.00 0.00 0.00
Constants and variables 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Structure 0.00 0.00 8.33 0.00 0.00 16.67 0.00 50.00 50.00 0.00 0.00 0.00
Other 37.50 14.29 58.33 33.33 50.00 33.33 100.00 0.00 0.00 0.00 0.00 0.00

Table 6
Agreement (%) between LLMs, L: Llama 3.1 (8B), G: Gemma 2 (9B)

Super-low Low Mid-low Mid-high High Super-high Micro avg

Either LLM correct 94.68 91.94 92.31 100.00 87.50 100.00 94.23
Both LLMs correct 89.36 74.19 46.15 86.21 75.00 100.00 81.25

No LLM correct 5.32 8.06 7.69 0.00 12.50 0.00 5.77
L correct, G incorrect 2.13 6.45 38.46 6.90 0.00 0.00 6.25
L incorrect, G correct 3.19 11.29 7.69 6.90 12.50 0.00 6.73

Table 7
LLMs and average student accuracy considering only sentences with words identified as sources of common
mistakes [12, 15], AL: at least, EX: exactly, UN: unless, IFF: if and only if, OF: only if, ET: either, NET: neither, EV
every, SM: some, ALL: all, SMT: something, JIC: just in case, * denotes words present in less than 5 phrases

AL EX* UN* IFF OF ET NET EV SM ALL SMT JIC*

Average student 74.95 76.79 78.18 83.7 78.13 86.85 83.94 85.36 89.34 87.38 79.49 84.45
LLama 3.1 (8B) 30.00 66.67 75.00 60.00 88.89 85.71 85.71 96.77 100.00 100.00 95.23 66.67
Gemma 2 (9B) 20.00 66.67 50.00 80.00 100.00 100.00 92.85 93.54 100.00 83.33 80.95 100.00

5. Discussion and Conclusions

In this work, we took an initial step toward defining a pipeline for evaluating LLMs on the task
of formalizing natural language utterances into FOL formulas. We applied the pipeline to Meta’s
Llama 3.1 (8B) and Google DeepMind’s Gemma 2 (9B), comparing their performance to that of students
on the same tasks, using a large dataset based on Tarski’s World. Already from our preliminary analyses,
several interesting points emerged: (𝑖) both LLMs slightly outperform the average student; (𝑖𝑖) there
is no clear alignment between the phrases found difficult by the students and those deemed difficult
by the LLMs; (𝑖𝑖𝑖) the vast majority of errors made by the LLMs are syntactic in nature; (𝑖𝑣) despite
being of comparable size, the two LLMs exhibit different behaviors that, if strategically combined, could
enhance translation performance; and (𝑣) the common sources of mistakes for students differ from
those of the considered LLMs.

Incidentally, these findings prompt important pedagogical questions, particularly concerning how
the “thinking” in LLMs may fundamentally differ from student reasoning. For example, while LLMs rely
on pattern recognition without an understanding of semantics, students learn through logical reasoning,
which may indicate that LLM-generated feedback could be better suited for tasks with lower cognitive
demands or for assisting below-average students rather than top-performing ones. Future studies could
explore these distinctions further to assess whether LLMs can reliably assist students in tasks requiring
deeper semantic comprehension or if they are more effective as support tools for students needing
guidance with fundamental concepts. Additionally, it is worth investigating the specific ways in which
the nature of LLM errors (primarily syntactic) contrasts with student errors, which could inform a
targeted approach for LLM-based feedback that addresses common student mistakes more accurately.

Other than this, for future work, we plan to: extend our analyses to additional models and prompting



techniques; evaluate the alignment between accuracy improvements across repeated student submissions
and multiple attempts by LLMs; investigate the (self-)correcting capabilities of LLMs; build on the
notion of tree edit distance to define a metric for measuring the semantic distance between formulas;
and conduct a more in-depth text analysis to uncover patterns and regularities related to formalization
accuracy.
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