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Abstract
Symbolic classification is a subfield of symbolic learning focused on extracting a collection
of mutually exclusive logical rules for classification. This is typically achieved by learning
intermediate models, such as decision trees or decision lists. In this paper, we present Modal
Sequential Covering (MSC), a decision list learning algorithm that generalizes several existing
proposals in the literature. We also provide an early open-source implementation of this
algorithm in Julia, integrated within Sole, a comprehensive end-to-end framework for modern
symbolic AI. An experimental comparison with available tools reveals that MSC allows us
to learn simpler but equally performant models. The integration of MSC into Sole enables
manipulating and visualizing the extracted knowledge in logical form. As Sole is designed
for symbolic learning with modal and propositional logics, this work lays the foundation for
further generalization to non-tabular data.
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1. Introduction
Recent developments in machine learning have driven attention to black-box models,
particularly for classification. This trend has led, in turn, to a demand for interpretation
and explanation methods. However, some argue [1] that developing algorithms that
inherently learn interpretable white-box models is preferable: symbolic learning, the
subfield of machine learning concerned with extracting logical formulas from data, presents
one alternative, offering intelligible and actionable models.

Symbolic classification seeks to extract a set of mutually exclusive logical rules for
decision-making:

Γ = {𝜙1 ⇒ 𝐿1, . . . , 𝜙𝑧 ⇒ 𝐿𝑧},

where each 𝜙𝑖 represents a rule’s condition, and 𝐿𝑖 is its corresponding class. The objective
is to ensure that only one rule will fire for any pair of rules in any input instance. Barring
minor variations, there are two high-level learning models in the symbolic context, that
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is, decision trees and decision lists; such simple models can be combined in several forms
of ensemble models, stacked models, and similar pseudo-functional strategies. Decision
trees resemble nestings of IF-ELSE constructs, and they are typically built in recursive
manner; when branches are read from top to bottom, they are immediately interpreted
as mutually exclusive rules, that is, a rule set. Decision lists are generally obtained as
the result of some type of sequential covering algorithm, that produces a collection of
rules, paired with a firing policy; typically, the firing policy is induced by an ordering of
the rules, ultimately making the models similar to an IF-ELSEIF-ELSE construct. A
rule set, as we have defined it, is then obtained by grafting the policy into the rules, so
to render them mutually exclusive.

The current landscape of well-known packages that offer accepted implementations
of decision trees and/or decision list learning algorithms includes, among others: Weka,
in Java, which offers both decision tree (C4.5 [2]) and decision list learning algorithms
(RIPPER [3], ONER [4]); Scikit-learn, in Python, which offers a decision tree learning
algorithm (CART [5]); Wittgenstein, again in Python, which provides a decision list
algorithm (IREP [6], RIPPER); Orange, in Python, with both decision trees and lists
(C4.5, CN2 [7]); Chefboost, in Python, with decision trees (ID3 [8]), supervisedPRIM and
oneR, in R, with implementations for decision lists (PRIM [9], ONER), and MLJ, in
Julia, which offers a decision list learning algorithm (CART). While decision trees and
similar techniques have received attention even in recent years (see, e.g. [10], among many
others), it does not seem to be the case with rule covering, with the possible exception
of explanation methods (see, e.g. [11]) or Tsetlin machines (see, e.g. [12]). A common
characteristics of all mentioned programming frameworks, symbolic algorithms, and
implementations, is that they do not leverage nor highlight the logical representations
of the extracted knowledge. As such, the learned rules cannot be manipulated within a
logical framework, and the algorithms themselves are not easily generalizable to more
expressive logical languages.

Sole.jl (or, simply, Sole) [13] is a open-source framework, written in the Julia program-
ming language, that allows one to design and deploy end-to-end learning tasks, from data
preprocessing and cleaning, filter-based feature extraction and selection, symbolic learning
models training, testing, inspection, and post-hoc modification, and result visualization
(a schema of Sole is shown in Fig 1). Sole is completely logic-based, and integrates several
reasoning tools that can be paired up and used on the learned rules. As much as decision
tree learning is concerned Sole already includes an implementation (MCART [14, 15])
that allows one to learn a decision tree from tabular and non-tabular data (using a
suitable modal logic), and to manipulate the resulting rules in a comprehensive logical
framework; modal logic extends propositional logic, and, as it emerges from several
experiments on real-world data, can be applied to extract useful, non-trivial knowledge
(see, e.g., [16, 17, 18]).

In this paper, we describe the implementation of the algorithm Modal Sequental
Covering (MSC), which, in a nutshell, is the Julia implementation of a sequential covering
algorithm that is based on, and generalizes several well-known algorithms, including
RIPPER, CN2, ONER, and IREP. Decision lists learned with MSC may have rules
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Figure 1: Structure of the Sole.jl framework for symbolic AI. Packages in green provide tools for
manipulating logical formulas; packages in red provide tools for (symbolic) data processing; those
in blue provide tools for learning symbolic models; those in purple provide tools for manipulating
(symbolic) models. This work showcases an effort towards building the ModalDecisionLists package.

whose literals are not just atomic statements but may be complex formulas; the covering
can be heuristically driven by fully parameterizable beam search and be based on one
of several available information measures; and, candidate literals can be explored via
deterministic/randomized search heuristics. An early implementation of MSC is available
in the ModalDecisionLists package, which is a work-in-progress package part of the Sole
learning suite. Moreover, consistently with the nature of Sole, a modal decision list is a
rule-based classification model that is able to cope with non-tabular data as well, using a
modal logic to replace the classical propositional one; while the current implementation
of does not allow the use of modal logic yet, it contains all necessary elements for its
immediate generalization.

2. Modal Sequential Covering
The most widely used algorithms for decision list learning follow the so-called sequential
covering approach, that is, a separate-and-conquer method that learns rules sequentially.
First, a set of uncovered instances is initialized as the set of all instances in the dataset;
then, at each iteration of a loop, a single rule is learned on the uncovered instances by
optimizing a loss function, and the instances covered by the rule is removed from the set
of uncovered instances. Typically, a rule 𝜙 ⇒ 𝐿 built at a given iteration is an object
whose antecedent 𝜙 is given by a conjunction of conditions over the attributes.



Algorithm 1: Modal sequential covering algorithm. The input encompasses a dataset ℐ,
a parametrization ℬ (resp., Π, 𝒢) for the beam search (resp., stopping conditions, search
space and strategy). FindBestConjunction deploys a (CN2-like) beam search heuristic to
learn conjunctions of formulas from a grammar; BestGuess computes the majority class
of a dataset.

function MSC(ℐ, Π,ℬ,𝒢):
rules← [] ▷ Initialize decision list
ℐuncov ← ℐ ▷ Initialize sub-dataset to be covered
while |ℐuncov| > 1 do

(𝜙, ℐ𝜙
uncov, ℐ¬𝜙

uncov)← FindBestConjunction(ℐuncov,ℬ,𝒢)
rule← (𝜙⇒ BestGuess(ℐ𝜙

uncov)) ▷ Create best rule
if a Π-stopping condition applies then break
rules.insert(rule) ▷ Add rule to list
ℐuncov ← ℐ¬𝜙

uncov ▷ Update sub-dataset to be covered
end
ruledefault ← (⊤ ⇒ BestGuess(ℐuncov)) ▷ Create best default rule
rules.insert(ruledefault) ▷ Add default rule to list
return rules

end

A conjunction is progressively built via heuristic approaches that explore new conjuncts
to be added, starting with an empty formula. For example, CN2 [7] adopts a beam
search approach over the space of conjunctions, while RIPPER [3] specializes a single
conjunction by selectively choosing the best condition to add (which is equivalent to
single-beam search approach). The methods mainly differ from each other in terms of
the loss function to be optimized (e.g., minimum description length, information gain,
Laplace accuracy), as well as the regularization strategies deployed (e.g., pruning and
stopping criteria). RIPPER, for example, performs a training/validation split prior to
the learning, and after iteratively growing each conjunction on the training set, it uses
the validation set to post-prune it; moreover, it prioritizes the least numerous classes, so
that classes are covered, in order, by their numerosity.

With a view of lifting the sequential covering approach to more-than-propositional logics
(e.g., modal logics), these premises inspire the design of a more general sequential covering
algorithm, namely Modal Sequential Covering (MSC), that iteratively learns conjunctions
of type 𝜓1 ∧ . . .∧ 𝜓𝑛, with 𝜓𝑖 belonging to a (parametrizable) grammar; this extension is
designed to trivially include the above algorithms where, for comparison, the conjuncts
are limited to be atoms. MSC retains the list-level separate-and-conquer and rule-level
beam search heuristic approaches, but extends the search space of conjuncts to a grammar,
and deploys a parametrizable search heuristic, both of which are hyperparameters of the
algorithm.

The pseudo-code of MSC is shown in Alg. 1.



3. Experiments and Results
We evaluated our implementation on five tabular datasets: Biopsy [19], Ionosphere [20],
MobilePrice [21], Yeast [22], and Abalone [23]. All datasets, except MobilePrice, are
publicly available on the UCI Machine Learning Repository [24], while MobilePrice is
available via Kaggle.

We compared the following methods: MSC (Sole) with the RANDCOV profile (Sole-
RANDCOV); MSC (Sole) with the CN2 profile (Sole-CN2); CN2 from the Orange Python
package (Orange-CN2); RIPPER from the Wittgenstein Python package (Wittgenstein-
RIPPER); CART from scikit-learn (Scikit-CART); CART from the DecisionTree.jl Julia
package (MLJ-CART). While the first two methods are based on MSC, Sole-CN2 behaves
similarly to Orange-CN2, and Sole-RANDCOV introduces novelty by generating random
propositional conjuncts. For each method, hyperparameter tuning was performed using
grid search, optimizing for Cohen’s 𝜅 coefficient.

The results are summarized in Tab. 1. First, MSC achieves competitive accuracy (in
terms of the 𝜅 coefficient) with state-of-the-art methods. Focusing on comparing, in
particular, Sole-CN2 against Sole-RANDCOV, the latter produces classifiers with less
atoms in 3 out of 5 cases; in one case, Ionosphere the number of atoms is similar (14 vs
15). In the cases in which the random search produces better results in terms of number
of atoms, the difference is very relevant (172 vs 213, 157 vs 464, and 108 vs 984); in
all of them, Sole-RIPPER outperforms Orange-CN2 as well. Moreover, observe that
Wittgenstein-RIPPER fails in 3 out of 5 cases, as it cannot handle more-than-binary
problems. Finally, decision trees such as those produced by MLJ-CART or Scikit-CART
are presented for reference, as there is no direct comparison between the two approaches.

Overall, our results show that MSC is a robust addition to the existing symbolic
learning approaches, providing a balance between performance and rule complexity. The
implementation in Sole makes it highly flexible, allowing the exploration of advanced
symbolic learning techniques in future work.

4. Conclusions
In this paper, we have introduced the Modal Sequential Covering (MSC) algorithm, a
generalization of existing decision list learning approaches, and its implementation within
the Sole framework. While MSC currently operates in propositional logic, it is designed to
seamlessly extend to modal logic formulas, which is particularly relevant given the success
of using modal logics in symbolic learning for extracting useful, non-trivial knowledge
from real-world data, as demonstrated in [16, 17, 18].

The integration of MSC into Sole provides a highly flexible platform, not only for
working with traditional decision lists but also for exploring complex symbolic learning
tasks using modal logics.



Table 1
Cross-validation results showing 𝜅 coefficient, training time, number of atoms in the model, and
average atoms per rule.

Dataset Implementation 𝜅 time (seconds) # atoms # atoms/rule

Bi
op

sy
Sole-RANDCOV 0.918± 0.02 1.85± 0.25 31 17.6
Sole-CN2 0.915± 0.02 0.69± 0.06 14 8.3
Orange-CN2 0.919± 0.02 0.19± 0.02 25 15.5
Wittgenstein-RIPPER 0.901± 0.05 0.16± 0.00 14 2.3
Scikit-CART 0.909± 0.04 0.001± 0.00 17 5.1
MLJ-CART 0.872± 0.04 1.11 · 10−5 ± 0.00 13 37.0

Io
no

sp
he

re Sole-RANDCOV 0.795± 0.01 0.91± 0.24 15 9.1
Sole-CN2 0.798± 0.04 21.98± 0.24 13 7.2
Orange-CN2 0.822± 0.06 42.23± 0.15 22 13.6
Wittgenstein-RIPPER 0.707± 0.01 0.50± 0.00 14 1.6
Scikit-CART 0.799± 0.03 0.01± 0.00 3 1.7
MLJ-CART 0.766± 0.04 1.12 · 10−5 ± 0.00 4 9.6

M
ob

ile
Pr

ic
e Sole-RANDCOV 0.799± 0.02 45.17± 3.27 172 88.2

Sole-CN2 0.795± 0.02 77.28± 0.16 213 104.1
Orange-CN2 0.774± 0.02 31.76± 0.07 268 135.9
Wittgenstein-RIPPER – – – –
Scikit-CART 0.811± 0.00 0.02± 0.00 72 6.6
MLJ-CART 0.821± 0.01 1.12 · 10−5 ± 0.00 123 484.3

Ye
as

t

Sole-RANDCOV 0.465± 0.01 31.63± 4.81 157 84.2
Sole-CN2 0.456± 0.02 2.54± 0.13 464 250.4
Orange-CN2 0.448± 0.02 1.62± 0.00 307 181.9
Wittgenstein-RIPPER – – – –
Scikit-CART 0.443± 0.02 0.003± 0.00 13 1.7
MLJ-CART 0.459± 0.04 1.11 · 10−5 ± 0.00 52 174.4

Ab
al

on
e Sole-RANDCOV 0.169± 0.02 38.29± 0.91 108 57.9

Sole-CN2 0.163± 0.03 95.08± 0.23 984 537.6
Orange-CN2 0.162± 0.01 628.10± 1.37 153 85.2
Wittgenstein-RIPPER – – – –
Scikit-CART 0.173± 0.01 0.002± 0.00 17 3.4
MLJ-CART 0.162± 0.01 1.14 · 10−5 ± 0.00 97 334.8

Acknowledgments
This research was supported by the FIRD project Methodological Developments in
Modal Symbolic Geometric Learning, funded by the University of Ferrara, and the
INDAM-GNCS project Symbolic and Numerical Analysis of Cyberphysical Systems
(CUP_E53C23001670001), funded by INDAM. G. Pagliarini, G. Sciavicco, and I.E.
Stan are GNCS-INdAM members. This research was also funded by the Italian Ministry
of University and Research through PNRR - M4C2 - Investimento 1.3 (Decreto Diretto-
riale MUR n. 341 del 15/03/2022), Partenariato Esteso PE00000013 - "FAIR - Future
Artificial Intelligence Research" - Spoke 8 "Pervasive AI", funded by the European Union
under the NextGeneration EU programme.

References
[1] C. Rudin, Stop explaining black box machine learning models for high stakes

decisions and use interpretable models instead, Nature Machine Intelligence 1 (2019)
206–215.

[2] J. R. Quinlan, Generating production rules from decision trees, in: Proceedings of
the 10th International Joint Conference on Artificial Intelligence., Morgan Kaufmann,
1987, pp. 304–307.



[3] W. W. Cohen, Fast effective rule induction, in: Proc. of the 12th International
Conference on Machine Learning, Morgan Kaufmann, 1995, pp. 115–123.

[4] R. C. Holte, Very simple classification rules perform well on most commonly used
datasets, Machine Learning 11 (1993) 63–91.

[5] L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and regression trees,
Wadsworth Publishing Company, 1984.

[6] J. Fürnkranz, G. Widmer, Incremental reduced error pruning, in: Proc. of the 11th
International Conference on Machine Learning„ Morgan Kaufmann, 1994, pp. 70–77.

[7] P. Clark, T. Niblett, The CN2 Induction Algorithm, Machine Learning 3 (1989)
261–283.

[8] J. Quinlan, Induction of Decision Trees, Machine Learning 1 (1986) 81–106.
[9] J. H. Friedman, N. I. Fisher, Bump hunting in high-dimensional data, Statistics

and computing 9 (1999) 123–143.
[10] A. Schidler, S. Szeider, Sat-based decision tree learning for large data sets, Journal

of Artificial Intelligence Research 80 (2024) 875–918.
[11] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. Prutkin, B. Nair, R. Katz,

J. Himmelfarb, N. Bansal, S. Lee, From local explanations to global understanding
with explainable ai for trees, Nature machine intelligence 2 (2020) 56–67.

[12] K. Abeyrathna, O.-C. Granmo, R. Shafik, L. Jiao, A. Wheeldon, A. Yakovlev, J. Lei,
M. Goodwin, A multi-step finite-state automaton for arbitrarily deterministic tsetlin
machine learning, Expert Systems - the Journal of Knowledge Engineering 40 (2023).

[13] F. Manzella, G. Pagliarini, A. Paparella, G. Sciavicco, I. E. Stan, Sole.jl – Symbolic
Learning in Julia, https://github.com/aclai-lab/Sole.jl, 2024.

[14] D. Della Monica, G. Pagliarini, G. Sciavicco, I. E. Stan, Decision trees with a modal
flavor, in: Proc. of the 21st International Conference of the Italian Association for
Artificial Intelligence (AIxIA), volume 13796 of LNCS, Springer, 2022, pp. 47–59.

[15] F. Manzella, G. Pagliarini, G. Sciavicco, I. E. Stan, Efficient modal decision trees,
in: Proc. of the 22th Conference of the Italian Association for Artificial Intelligence
(AIxIA), volume 14318 of Lecture Notes in Computer Science, Springer, 2023, pp.
381–395.

[16] F. Manzella, G. Pagliarini, G. Sciavicco, I. E. Stan, The voice of COVID-19: breath
and cough recording classification with temporal decision trees and random forests,
Artifcial Intelligence in Medicine 137 (2023) 102486.

[17] G. Pagliarini, G. Sciavicco, Interpretable land cover classification with modal decision
trees, European Journal of Remote Sensing 56 (2023) 2262738.

[18] G. Pagliarini, S. Scaboro, G. Serra, G. Sciavicco, I. E. Stan, Neural-Symbolic
Temporal Decision Trees for Multivariate Time Series Classification, in: Proceedings
of the 29th International Symposium on Temporal Representation and Reasoning
(TIME), volume 247 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022, pp. 13:1–13:15.

[19] O. L. Mangasarian, W. H. Wolberg, Cancer diagnosis via linear programming, Tech-
nical Report, University of Wisconsin-Madison Department of Computer Sciences,
1990.

[20] V. Sigillito, S. Wing, L. Hutton, , K. Baker, Ionosphere, UCI Machine Learning

https://github.com/aclai-lab/Sole.jl


Repository, 1989.
[21] A. Sharma, Mobile price classification dataset, https://www.kaggle.com/datasets,

2021.
[22] K. Nakai, Yeast, UCI Machine Learning Repository, 1996.
[23] W. Nash, T. Sellers, S. Talbot, A. Cawthorn, W. Ford, Abalone, UCI Machine

Learning Repository, 1995.
[24] A. Asuncion, D. Newman, UCI machine learning repository, 2007.


	1 Introduction
	2 Modal Sequential Covering
	3 Experiments and Results
	4 Conclusions

