
Model Checking of Optimal LTL and ASAP Properties
Davide Bresolin

1
, Filippo Fantinato

1,2
and Stefano Tonetta

2

1

Università di Padova, Padova, Italy

2

Fondazione Bruno Kessler, Trento, Italy

Abstract
Model checking has long been employed as a method for the formal verification of control systems, with a focus

on ensuring correctness and safety. However, in practical scenarios (e.g., robotics, aviation and aerospace), simply

verifying whether a control system satisfies a given property may not suffice. There is often the requisite to

optimize system behavior with respect to certain criteria, such as response time. For instance, in verifying a

reachability property, one may be interested in knowing if the controller reaches the goal as soon as possible

(ASAP). Despite the simplicity of such requirement, its formalization has not yet been addressed in the literature

and requires to reason about the strategy of the controller and the cost of the executions in closed-loop with

the given environment. More in general, this paper proposes the formalization and verification of properties

for controllers that must satisfy a temporal logic specification optimally, i.e., in the best way possible given

the behavior on the plant to be controlled. This relies on and is parametrized by a quantitative semantics for

temporal logic. We focus on linear-time temporal logic (LTL), for which various quantitative semantics have

been defined. In order to characterize the fulfillment of LTL properties as soon as possible (ASAP), we introduce

a new quantitative semantics related to the length of the shortest informative prefix. Finally, we focus on ASAP

co-safety properties and reduce the optimal model checking to standard qualitative reactive synthesis. We provide

a proof of concept demonstration of the reduction with nuXmv.

1. Introduction

Model checking has long been employed as a method for the formal verification of control systems, with

a focus on ensuring correctness and safety. However, in practical scenarios (e.g., robotics, aviation and

aerospace), simply verifying whether a control system satisfies a given property may not suffice. There

is often a desire to optimize system behavior with respect to certain criteria, such as response time. For

instance, in verifying a reachability property, one may be interested in knowing if the controller reaches

the goal as soon as possible (ASAP). Despite the simplicity of such requirement, its formalization has

not yet been addressed in the literature and requires to reason about the strategy of the controller

and the cost of the executions in closed-loop with the given environment. More in general, this paper

formalizes the problem of verifying that a control system not only satisfies a specified LTL property,

but also it does it in the best way possible given the assumption on the environment. The problem

is parametric with respect to a quantitative semantics that defines the value the controller should

optimize. As second contribution, we propose a novel quantitative semantics for LTL tailored to capture

the ASAP requirement for temporal reachability properties and, as third contribution, we focus on

a co-safety fragment of LTL, namely negation of formulas expressed in LTLEBR [1], and reduce the

optimal model checking problem with the ASAP semantics to a qualitative realizability problem. Finally,

to demonstrate the efficacy of our approach, we have implemented our methodology and applied it

to various examples using nuXmv [2], a state-of-the-art model checker. We tested the optimal model

checking procedure on various co-safety properties and on some scalable benchmarks.

The rest of the paper is organized as follows: Section 2 describes a motivating example; Section 3

recalls the background definitions and results; Section 4 defines the optimal model checking problem;

Section 5 introduces the new ASAP semantics; Section 6 reduces the ASAP optimal model checking

problem to reactive synthesis; in Section 7, we compare with related work; in Section 8, we report on

the experimental results, and finally in Section 9, we draw some conclusions.

OVERLAY 2024, 6th International Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and Synthesis

$ davide.bresolin@unipd.it (D. Bresolin); filippo.fantinato.2@studenti.unipd.it (F. Fantinato); tonettas@fbk.eu (S. Tonetta)

© 2024 This work is licensed under a “CC BY 4.0” license.

mailto:davide.bresolin@unipd.it
mailto:filippo.fantinato.2@studenti.unipd.it
mailto:tonettas@fbk.eu
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2. Example

We introduce the optimal model checking problem with a simple illustrative example of an agent that

must reach a goal position avoiding an opponent, for example a fox that must reach a chicken and it is

hindered by a dog, as shown in Figure 1.

Figure 1: The fox-dog-chicken example.

The fox and the dog move in a grid, while the chicken

stays in the upper right corner. The possible movements

are: move up, down, left, right, or stop. Suppose that the

fox moves faster than the dog (i.e. the fox can move at

each step while the dog moves every other step) and that

the dog is not standing still. The strategy of the fox can

be to go towards the chicken unless the dog is on the

way and in that case, it just stops until the dog moves

and then it goes ahead. However, such a strategy does

not reach the goal as soon as possible. Since the fox is

quicker than the dog, a better strategy is to pass around the dog.

The controller 𝐷 and the plant 𝑃 are specified as transition systems. The property is specified in

LTL as ¬bad_statesU goal where bad_states are the states where the fox and the dog are in the same

position, while goal is the state where the fox and the chicken are in the same cell of the grid. We

formalize and solve the problem of checking whether 𝐷 satisfies the property ASAP with the given

plant 𝑃 .

3. Notations and Preliminary Definitions

In the following, we consider Symbolic Transition Systems (STSs), also known as synchronous state

machines, to represent the behavior of reactive systems, i.e. systems whose role is to maintain an

ongoing interaction with their environment.

Given a set of propositional variables Σ, an STS 𝑆 over Σ is a tuple ⟨𝑉,Σ, 𝐼, 𝑇 ⟩, where 𝑉 is a set of

state variables disjoint from Σ, 𝐼 is a formula over 𝑉 , and 𝑇 is a formula over 𝑉 ∪ Σ ∪ 𝑉 ′
. We assume

the reader to be familiar with the standard notions of paths, traces, and products of STSs.

In order to specify properties, we consider Linear Temporal Logic with future and past operators,

denoted by LTL and interpreted over infinite sequences of states. Two notable classes of properties

that can be expressed in LTL are safety and co-safety properties. Safety properties are those properties

which can be refuted by a bad-prefix, i.e., a finite computation than cannot be extended to an infinite

computation that satisfies the formula. Conversely, co-safety properties are those properties which can

be verified by identifying a good-prefix, i.e., a finite computation such that all infinite extensions satisfy

the formula. In this paper we use the syntactic fragment LTLEBR [1] to express safety properties, and

the dual fragment co-LTLEBR for co-safety ones.

Definition 3.1 (The logic co-LTLEBR). Let 𝑎, 𝑏 ∈ N, a LTLEBR formula 𝜒 is inductively defined as follows:

𝜂 := 𝑝 | ¬𝜂 | 𝜂1 ∨ 𝜂2 | Y𝜂 | 𝜂1S𝜂2 (Pure Past Layer)

𝜓 := 𝜂 | ¬𝜓 | 𝜓1 ∨ 𝜓2 | X𝜓 | 𝜓1U
[𝑎,𝑏]𝜓2 (Bounded Future Layer)

𝜑 := 𝜓 | 𝜑1 ∧ 𝜑2 | X𝜑 | F𝜑 | 𝜓U𝜑 (Future Layer)

𝜒 := 𝜑 | 𝜒1 ∨ 𝜒2 | 𝜒1 ∧ 𝜒2 (Boolean Layer)

In the rest of the paper, we assume that Σ = 𝐶 ∪ 𝑈 is divided into two disjoint sets 𝐶 and 𝑈 of,

respectively, controllable and uncontrollable variables.

Definition 3.2. An arena for a reachability game is given by a deterministic STS 𝑆 = ⟨𝑉,Σ, 𝐼, 𝑇 ⟩ and

a formula 𝑓 over 𝑉 , called winning condition. We say that a strategy for controller 𝑔 : (2𝑈)+ → 2𝐶

wins the reachability game with arena 𝑆 and winning condition 𝑓 iff for all sequences of choices made by

environment 𝑢 = 𝑢1, 𝑢2, · · · ∈ (2𝑈)𝜔 , there exists 𝑛 such that the 𝑛-th state of the unique path over the

trace 𝑢1 · 𝑔(𝑢1), 𝑢2 · 𝑔(𝑢1𝑢2), . . . satisfies 𝑓 .

Reactive synthesis is the problem of translating a logical specification into a reactive system that is

guaranteed to satisfy the specification for all possible behaviors of its environment.

Definition 3.3 (Reactive Synthesis problem). Let 𝜑 be a temporal formula over the alphabet Σ = 𝐶 ∪𝑈 .

We say that 𝜑 is realizable if and only if there exists a strategy 𝑔 : (2𝑈)+ → 2𝐶 such that for all

𝑢 = (𝑢1, 𝑢2, . . .) ∈ (2𝑈)𝜔 , it holds that the sequence satisfies 𝑢1 · 𝑔(𝑢1), 𝑢2 · 𝑔(𝑢1𝑢2), . . . |= 𝜑. The

synthesis problem is the decision problem to say whether 𝜑 is realizable or not. If 𝜑 is realizable, the

corresponding strategy 𝑔 is computed.

For co-safety properties, reactive synthesis can be reduced to finding a winning strategy in a reacha-

bility game defined from the formula. In [1] is shown how reactive synthesis from LTLEBR formulas

can be reduced to solving a safety game over a monitor built directly from the specifications. Such

monitor accepts only those traces satisfying the formula from which is built, while it goes into error

state whenever a trace not satisfying the formula is met. Thanks to the duality between safety and

reachability games, it is possible to synthesize a co-LTLEBR formula exploiting the monitor built from

the corresponding LTLEBR formula, i.e. the negation.

In [3], the synthesis problem is extended to variants of LTL with quantitative semantics such as

LTL[ℱ] and LTL
disc[𝒟]. In general, quantitative semantics assign a real value J𝜎, 𝜑K ∈ [0, 1] to

a formula 𝜑 over a sequence 𝜎. As in [3], we extend the evaluation of a formula to a system as

J𝑆, 𝜑K := inf {J𝜎, 𝜑K | 𝜎 ∈ ℒ (𝑆)}, and thus to a strategy 𝑔 as J𝑔, 𝜑K := inf {J𝑔(𝑢), 𝜑K | 𝑢 ∈ (2𝑈)𝜔}.

Definition 3.4 ([3] Quantitative Reactive Synthesis problem). Let 𝜑 be a temporal formula over Σ.

The realizability problem for 𝜑 is the problem to find a strategy 𝑔 such that J𝑔, 𝜑K is maximal among all

the strategies. We say that 𝜑 is realizable with value 𝑇 if and only if there exists a strategy 𝑔 such that

J𝑔, 𝜑K ≥ 𝑇 .

In order to distinguish the quantitative realizability from the standard one, we call the latter qualitative

realizability. Unsurprisingly, the decidability and complexity of the quantitative realizability problem

depends on the actual quantitative semantics we consider. As shown in [4], the quantitative realizability

problem for LTL[ℱ] is 2EXPTIME-complete. The same paper gives only an approximate solution for

the logic LTL
disc[𝒟], that allows to obtain a strategy that is optimal up to any desired accuracy 𝜖 > 0.

Later on in this paper, we propose a quantitative semantics to formalize ASAP properties, and we show

that checking if a given strategy is optimal is 2EXPTIME for generic co-safety properties.

4. Optimal Model Checking

In this section, we formalize the problem of checking whether a controller satisfies optimally a temporal

specification with respect to a given plant. To this purpose, we suppose to be given a quantitative

semantics that assigns a real value J𝑆, 𝜑K to a formula 𝜑 and a transition system 𝑆. Moreover, we define

formally some notations and assume that the system 𝑆 = 𝐷 × 𝑃 is the closed loop composition of a

controller 𝐷 and a plant 𝑃 . Given a subset 𝐼 of propositions in Σ, we say that an STS 𝑆 = ⟨𝑉,Σ, 𝐼, 𝑇 ⟩
is input-enabled with respect to 𝐼 iff for all 𝑠 ∈ 2𝑉 and 𝑖 ∈ 2𝐼 , there exist 𝑜 ∈ 2Σ∖𝐼

and 𝑠′ ∈ 2𝑉 such

that 𝑠, 𝑖 · 𝑜, 𝑠′ |= 𝑇 . Given a subset 𝑂 of propositions in Σ, we say 𝑆 has a functional dependency

on the states for 𝑂 iff for every 𝑠, 𝑠1, 𝑠2 ∈ 2𝑉 , 𝑎1, 𝑎2 ∈ 2Σ, if 𝑠, 𝑎1, 𝑠1 |= 𝑇 and 𝑠, 𝑎2, 𝑠2 |= 𝑇 , then

𝑎1(𝑂) = 𝑎2(𝑂). The plant model is an STS 𝑃 over Σ that is input-enabled with respect to 𝐶 and has a

functional dependency on the states for 𝑈 , i.e. it is a symbolic representation of a set of strategies of

the form 𝑒 : (2𝐶)* → 2𝑈 . The controller model is an STS 𝐷 over Σ that is input-enabled with respect

to 𝑈 , i.e. it is a symbolic representation of a set of strategies of the form 𝑔 : (2𝑈)+ → 2𝐶 .

We are interested in proving that the closed loop ℒ (𝐷× 𝑃) satisfies an LTL formula 𝜑 over Σ. This

optimal model checking problem is formalized and adapted to our case as follows:

Definition 4.1 (Optimal model checking). We say that 𝐷 satisfies 𝜑 in the context 𝑃 optimally, denoted

by 𝐷 |=𝑃
* 𝜑, iff there does not exist 𝐷′

such that J𝐷′ × 𝑃, 𝜑K > J𝐷 × 𝑃, 𝜑K.

Note that, in general, given two controllers 𝐷 and 𝐷′
, their composition with the plant 𝑃 may lead

to completely different runs. Thus, it is not possible to compare the semantics of 𝐷 × 𝑃 and 𝐷′ × 𝑃
on single runs. This is why in Def. 4.1, we use J𝐷 × 𝑃, 𝜑K, which takes the minimum value of over all

traces.

Definition 4.2 (Quantitative Realiability Under Assumptions). Let 𝜑 be a temporal formula over the

alphabet Σ = 𝐶 ∪ 𝑈 and 𝑃 is a plant model. We say that 𝜑 is realizable under assumption 𝑃 with value

𝑇 if and only if there exists a controller 𝐷 such that J𝐷 × 𝑃, 𝜑K ≥ 𝑇 .

Suppose we can compute the value 𝑇 = J𝐷×𝑃, 𝜑K, then we can reduce the optimal model checking

problem to quantitative realizability of 𝜑 under the assumption 𝑃 with a value 𝑇 ′ > 𝑇 . In the next

sections, we will show how this reduction can rely on qualitative realizability in the particular case of

the ASAP quantitative semantics.

5. ASAP LTL

In this section, we propose a new quantitative semantics that is suitable to formalize ASAP properties.

Our definition of ASAP semantics gives a value in N ∪ {∞}. We then cast the semantics to [0, 1] ⊂ R
to be aligned with the standard definitions of quantitative semantics. Moreover, we introduce an

alternative recursive definition of the ASAP semantics and show that the two definitions are equivalent.

The ASAP semantics is related to the notion of informative prefix introduced in [5] as the syntactical

counterpart of the notion of “good prefix” for a co-safety formula: a finite computation that witnesses the

satisfaction of the formula. While liveness, persistence, and reactivity LTL formulas do not necessarily

have an informative prefix, if 𝜑 is a safety LTL formula then it is possible to build an automaton 𝐴¬𝜑
that accepts exactly all informative prefixes of ¬𝜑 [5]. This “tightness” results on the monitor for a

formula can be extended to LTLEBR by redefining the definition of informative prefix to include past

operators as follows.

We say that a finite computation 𝜋 = 𝜎0𝜎1 . . . 𝜎𝑛−1 is an informative prefix for an LTL formula 𝜑 if

and only if there exists a mapping 𝐿 : {0, . . . , 𝑛} ↦→ 2𝑐𝑙(𝜑) that respects the following conditions:

1. 𝜑 ∈ 𝐿(0)

2. 𝐿(𝑛) is empty.

3. For all 0 ≤ 𝑖 ≤ 𝑛− 1 and 𝜓 ∈ 𝐿(𝑖):

• if 𝜓 is ⊤, 𝑝, or ¬𝑝, then it is satisfied by 𝜎𝑖;

• if 𝜓 = 𝜓1 ∧ 𝜓2, then 𝜓1 ∈ 𝐿(𝑖) and 𝜓2 ∈ 𝐿(𝑖);

• if 𝜓 = 𝜓1 ∨ 𝜓2, then 𝜓1 ∈ 𝐿(𝑖) or 𝜓2 ∈ 𝐿(𝑖);

• if 𝜓 = X𝜓1, then 𝜓1 ∈ 𝐿(𝑖+ 1);

• if 𝜓 = Y𝜓1, then 𝑖 > 0 and 𝜓1 ∈ 𝐿(𝑖− 1);

• if 𝜓 = Z𝜓1, then 𝑖 = 0 or 𝜓1 ∈ 𝐿(𝑖− 1);

• if 𝜓 = 𝜓1U𝜓2, then 𝜓2 ∈ 𝐿(𝑖) or [𝜓1 ∈ 𝐿(𝑖) and 𝜓1U𝜓2 ∈ 𝐿(𝑖+ 1)];

• if 𝜓 = 𝜓1R𝜓2, then 𝜓2 ∈ 𝐿(𝑖) and [𝜓1 ∈ 𝐿(𝑖) or 𝜓1R𝜓2 ∈ 𝐿(𝑖+ 1)];

• if 𝜓 = 𝜓1S𝜓2, then 𝜓2 ∈ 𝐿(𝑖) or [𝜓1 ∈ 𝐿(𝑖) and 𝜓1S𝜓2 ∈ 𝐿(𝑖− 1)];

• if 𝜓 = 𝜓1T𝜓2, then 𝜓2 ∈ 𝐿(𝑖) and [𝜓1 ∈ 𝐿(𝑖) or 𝜓1T𝜓2 ∈ 𝐿(𝑖− 1)].

The mapping 𝐿 is called the witness for 𝜑 in 𝜋. Given an informative prefix 𝜋𝑛 of a formula 𝜑 on

an infinite trace 𝜎, we say that 𝜋𝑛 is minimal iff there does not exist any other informative prefix of 𝜎
shorter in length than 𝜋𝑛.

Definition 5.1 (ASAP semantics). Let 𝜑 be an LTL formula and 𝜎 an infinite trace. The ASAP semantics

of 𝜑 evaluated on 𝜎, denoted by J𝜎, 𝜑K
ASAP

, is defined as follows: J𝜎, 𝜑K
ASAP

= 𝑠𝑖𝑧𝑒(𝜋𝜎), where 𝜋𝜎 is the

shortest informative prefix of 𝜎.

The ASAP semantics can also be defined by recursion on the structure of the formula.

Definition 5.2 (ASAP recursive semantics). Let 𝜑 be an LTL formula and 𝜎 be a trace. The ASAP

semantics of 𝜑 evaluated on 𝜎 at position 𝑖 is a natural number 𝑛, denoted by J𝜎, 𝑖, 𝜑K𝑅
ASAP

and defined

recursively as follows:

J𝜎, 𝑖,⊤K𝑅
ASAP

= 1

J𝜎, 𝑖,⊥K𝑅
ASAP

= +∞

J𝜎, 𝑖, 𝑝K𝑅
ASAP

=

{︃
1 if 𝑝 ∈ 𝜎𝑖

+∞ otherwise

J𝜎, 𝑖,¬𝑝K𝑅
ASAP

=

{︃
1 if 𝑝 ̸∈ 𝜎𝑖

+∞ otherwise

J𝜎, 𝑖, 𝜑1 ∧ 𝜑2K𝑅ASAP = max
{︀
J𝜎, 𝑖, 𝜑1K𝑅ASAP, J𝜎, 𝑖, 𝜑2K

𝑅
ASAP

}︀
J𝜎, 𝑖, 𝜑1 ∨ 𝜑2K𝑅ASAP = min

{︀
J𝜎, 𝑖, 𝜑1K𝑅ASAP, J𝜎, 𝑖, 𝜑2K

𝑅
ASAP

}︀
J𝜎, 𝑖,X𝜑K𝑅

ASAP
= J𝜎, 𝑖+ 1, 𝜑K𝑅

ASAP
+ 1

J𝜎, 𝑖,Y𝜑K𝑅
ASAP

=

{︃
J𝜎, 𝑖− 1, 𝜑K𝑅

ASAP
− 1 if 𝑖 > 0

+∞ otherwise

J𝜎, 𝑖,Z𝜑K𝑅
ASAP

=

{︃
J𝜎, 𝑖− 1, 𝜑K𝑅

ASAP
− 1 if 𝑖 > 0

1 otherwise

J𝜎, 𝑖, 𝜑1U𝜑2K𝑅ASAP = min
𝑘≥0

{︂
max

{︂
J𝜎, 𝑖+ 𝑘, 𝜑2K𝑅ASAP + 𝑘, max

0≤𝑗<𝑘

{︀
J𝜎, 𝑖+ 𝑗, 𝜑1K𝑅ASAP + 𝑗

}︀}︂}︂
J𝜎, 𝑖, 𝜑1R𝜑2K𝑅ASAP = max

𝑘≥0

{︂
min

{︂
J𝜎, 𝑖+ 𝑘, 𝜑2K𝑅ASAP + 𝑘, min

0≤𝑗<𝑘

{︀
J𝜎, 𝑖+ 𝑗, 𝜑1K𝑅ASAP + 𝑗

}︀}︂}︂
J𝜎, 𝑖, 𝜑1S𝜑2K𝑅ASAP = min

0≤𝑘≤𝑖

{︂
max

{︂
J𝜎, 𝑖− 𝑘, 𝜑2K𝑅ASAP − 𝑘, max

0<𝑗≤𝑘

{︀
J𝜎, 𝑖− 𝑗, 𝜑1K𝑅ASAP − 𝑗

}︀}︂}︂
J𝜎, 𝑖, 𝜑1T𝜑2K𝑅ASAP = max

0≤𝑘≤𝑖

{︂
min

{︂
J𝜎, 𝑖− 𝑘, 𝜑2K𝑅ASAP − 𝑘, min

0≤𝑗<𝑘

{︀
J𝜎, 𝑖− 𝑗, 𝜑1K𝑅ASAP − 𝑗

}︀}︂}︂

where 𝑚𝑎𝑥,𝑚𝑖𝑛,+, and − are defined on the extended natural numbers N ∪ {∞}. We recall that

∞− 𝑘 = ∞, if 𝑘 ∈ N, 0− 𝑘 = 0, if 𝑘 ∈ N ∪ {∞}, and 𝑘 −∞ = 0, if 𝑘 ∈ N. We say that J𝜎, 𝜑K𝑅
ASAP

= 𝑛
if and only if J𝜎, 0, 𝜑K𝑅

ASAP
= 𝑛.

We now prove that the two quantitative semantics are equivalent.

Theorem 5.1. Let 𝜑 be an LTL formula, 𝜎 = 𝜎0𝜎1 . . . be an infinite trace, and 𝜋𝜎 = 𝜎0𝜎1 . . . 𝜎𝑛−1 be

the prefix of 𝜎 of length 𝑛. If 𝜋𝜎 is a minimal informative prefix for 𝜑, then J𝜎, 𝜑K𝑅
ASAP

= J𝜎, 𝜑K
ASAP

.

Finally, we define the normalized version of the ASAP semantics as follows:

Definition 5.3 (Normalized ASAP Semantics). For any formula 𝜑 and trace 𝜎,

J𝜎, 𝜑K𝑁
ASAP

=

{︃
0 if J𝜎, 𝜑K

ASAP
= +∞

1/(J𝜎, 𝜑K
ASAP
) otherwise

Thus, J𝜎, 𝜑K𝑁
ASAP

tends to 0 while J𝜎, 𝜑K
ASAP

tends to +∞.

6. Reduction of ASAP LTL Model Checking to Reactive Synthesis

We now show that, in the case of co-safety formulas, the optimal model checking problem with ASAP

LTL semantics can be reduced to a reachability game. The key step is to build an arena 𝐴𝑃
𝜑 with a

parametrized winning condition 𝛾(𝑘) so that there exists a winning strategy iff there exists a controller

𝐷 such that J𝐷 × 𝑃, 𝜑K
ASAP
< 𝑘. With such a construction, we can reduce the optimal model checking

problem to a qualitative synthesis problem. This is achieved by 1) computing 𝑘 = J𝐷 × 𝑃, 𝜑K
ASAP

and 2)

checking if there exists a winning strategy for the game 𝐴𝑃
𝜑 with winning condition 𝛾(𝑘).

We first define an STS counting the transitions from the initial state. It has a new state variable steps
so that initially steps has value 0 and at each step it is increased by 1. Formally, we define the STS𝐴steps

as follows: 𝐴steps := ⟨{steps}, ∅, steps = 0, steps ′ ↔ ite(steps < max , steps + 1, steps)⟩, where ite

is the Boolean encoding of an if-then-else term and max is a sufficiently large constant. Let 𝐴𝜑 be a

deterministic STS with a boolean condition 𝑓𝜑 on the STS variables that is reached by any informative

prefix of 𝜑 and built starting from an LTLEBR formula, as given by [1]. Recall that a boolean condition is

reached by a STS 𝑆 iff there exists a finite path 𝑠0 . . . 𝑠𝑘 in 𝑆 such that 𝑠𝑘 |= 𝑓𝜑. Step 1, i.e. computing

𝑘, can be solved by looking for a minimal 𝑚 such that 𝐷 × 𝑃 × 𝐴𝜑 × 𝐴steps |= F(𝑓𝜑 ∧ steps ≤ 𝑚).
This can be achieved with an incremental number of model checking problems or with parametric

model checking.

Let 𝐴𝑃 be the deterministic STS accepting the same language of 𝑃 with error state 𝑒𝑃 that is reached

wherever the trace is not accepted by 𝑃 . Then we define the arena 𝐴𝑃
𝜑 as the product 𝐴𝑃 ×𝐴𝜑 ×𝐴𝑐

𝑠

with the winning condition 𝛾(𝑘) defined as 𝑒𝑃 ∨ (𝑓𝜑 ∧ step < 𝑘).
A winning strategy for the reachability game with winning condition 𝛾(𝑘) and arena 𝐴𝑃

𝜑 guarantees

that in every play of the game the controller can reach a state where either the plant monitor is in 𝑒𝑃
(the play is not a valid trace of the plant), or the monitor for 𝜑 is in the accepting state and the value of

𝑠𝑡𝑒𝑝 is less than the bound 𝑘 (formula 𝜑 is true in less than 𝑘 steps). We can prove that existence of a

winning strategy corresponds to existence of a controller that can enforce 𝜑 with cost less than 𝑘.

Theorem 6.1. There exists a winning strategy for the reachability game with winning condition 𝛾(𝑘) and

arena 𝐴𝑃
𝜑 iff there exists a controller 𝐷 such that J𝐷 × 𝑃, 𝜑K

ASAP
< 𝑘.

The next theorem states the complexity of the procedure.

Theorem 6.2. The ASAP LTL model checking problem for co-LTLEBR is 2EXPTIME-complete.

Remark. It is not possible to synthesize a controller winning the game enforcing the monitor plant into

error state, since the plant is assumed to be input-enabled and so the built monitor accepts any possible

combination of controllable variables. Therefore, it is up to the environment to choose whether it goes into

error state or not.

7. Related work

The problem of optimizing winning strategies has been studied since the early 2000 [6]. Earlier works

addressed optimization of the memory size of the controller (i.e., number of states of the automaton) [7]

and minimization of waiting times for request-response conditions [8]. In this paper, we relate the

problem of model checking open systems, also studied in [9], to the problem of optimal synthesis, using

a quantitative semantics for LTL to define the problem of optimal model checking in terms of synthesis

of a better strategy.

Several formalisms for quantitative semantics for temporal logic exist in the literature [10, 11, 12,

13, 14, 15, 16]. While these formalisms can be used to define optimality criteria, most of the current

works concentrate on the model checking problem and do not consider the synthesis problem. Notable

exceptions are the logics LTL[ℱ] and LTL
disc[𝒟], introduced in [4], which extend LTL, the first, with

propositional quality operators to prioritize and weight different satisfaction possibilities and, the

second, with discounting operators, to take into account the delay incurred in the satisfaction of

eventualities. The logic LTL[ℱ] has been subsequently used to develop algorithms for quantitative

assume-guarantee synthesis of GR(1) properties [3], for compositional assume-guarantee synthesis [17],

and for the synthesis of finite-memory controllers of discrete event systems [18]. In particular, the ASAP

quantitative semantics is very related to the logic LTL
disc[𝒟], which extends LTL with a “discounted until”

U 𝜂 operator that takes into consideration the length of the prefix needed to satisfy the eventualities. It is

parametrized by a function 𝜂 over the natural numbers. Indeed, with discounting function 𝜂𝑈 (𝑖) =
1

𝑖+1 ,

if 𝑝 and 𝑞 are propositional, the semantics of 𝑝U 𝜂𝑞 is the same as the ASAP semantics of 𝑝U 𝑞. In [4],

it is also remarked that a discounted next can be expressed using the normal X and the discounted

until: one has to define 𝜂𝑋(𝑖) such that 𝜂𝑋(𝑖) = 𝜂𝑈 (𝑖+ 1) and then define the discounted next X𝜂(𝜓)
as X(⊥U 𝜂𝑋𝜓). However, in this case, the semantics of the discounted next and the discounted until

use different discount functions. Moreover, the recursive definition of the temporal operators are not

valid for LTL
disc[𝒟]. Thus, although the motivations are the same, the quantitative semantics that we

propose differ from LTL
disc[𝒟] and is more natural to express ASAP requirements in the sense that it is

directly connected to the length of informative prefixes that satisfy the formula.

A line of research related to this paper is the study of “good enough/best effort synthesis”, a variant

of synthesis in which the system is required to satisfy the specification only as long and as much

as allowed by the environment, and it is allowed to fail when a satisfying computation does not

exist [19, 20, 21, 22, 23]. While the formalisms and the algorithms are related to our work, the setting is

quite different, as they aim to synthesize a controller that is “good enough” to at least partially respect

the desired properties when they cannot be enforced, and not to synthesize the “best controller” under

some optimality criteria.

8. Proof of Concept Evaluation

We implemented the optimal model checking procedure with a toolchain called optimal-strategy
that uses the nuXmv model checker [2] to build the monitor for the formula, solve the parametric

model checking, and build the arena for the reachability game. The game is solved by the symbolic

safety game solver simple-synth we developed from scratch. The game arena is produced in AIGER

format [24], to allow using any tool for reactive synthesis for solving the game. All code, examples

and benchmarks to replicate the experiments are available in the artifact
1
. The toolchain can either

solve the parameterized model checking defined in Section 5 to compute the upper-bound 𝑘 for the

reachability game, or start with a user-defined upper bound.

As a first benchmark, we tested the fox, dog and chicken example introduced in Section 2 and we

have proved that the given controller is not optimal, since it enforces the specification in 15 steps, while

the toolchain synthesized a controller which satisfies the specification in 7 steps.

To test the tool, we considered scalable formulas of increasing size. Since there are no other tools

solving the optimal model checking problems for ASAP LTL, there are no comparisons with other

software. The first formula considers a scenario where a car moves on a 𝑛× 𝑛 square grid. The initial

controller can only move the car up, down, left and right. The optimal controller synthesized by the

tool is allowed also to move diagonally. We require the controller to reach 𝑛 points along the diagonal

of the grid, avoiding a set 𝑏𝑎𝑑 of bad states, as formalized by:

¬𝑏𝑎𝑑U (𝑠𝑛−1 ∧O(𝑠𝑛−2 ∧O(𝑠𝑛−3 ∧O(. . . ∧O𝑠0)))), (1)

where 𝑏𝑎𝑑 is the set of bad states defined as follows: 𝑏𝑎𝑑 =
⋁︀⌊𝑛−1⌋

𝑖=0 (𝑥 = 𝑖 ∧ 𝑦 = 𝑖+ 1).
The other 6 categories consist of synthetic formulas which are conjunctions and disjunctions of next,

bounded finally, bounded globally, and unbounded finally and until operators. The plant consists of𝑛 con-

trollable variables 𝑐𝑖, 𝑛 uncontrollable variables 𝑢𝑖 and is defined to flip the values of uncontrollable vari-

ables at each step, forcing mutual exclusion between odd and even uncontrollable variable. The formulas

1

https://drive.google.com/file/d/1qbs6FvfcFeUQitwFWGImfuQcjgOkzQ7I/view?usp=sharing

https://drive.google.com/file/d/1qbs6FvfcFeUQitwFWGImfuQcjgOkzQ7I/view?usp=sharing

are aimed to test the toolchain by increasing the number of variables and the nesting of next operators:

⋀︁𝑛−1

𝑖=0
X𝑖(F[0,6](𝑐𝑖 = 𝑢𝑖)) (2)⋀︁𝑛−1

𝑖=0
(X𝑖G[0,3]F[0,3](𝑐 = 𝑢𝑖)) (3)⋀︁𝑛−1

𝑖=0
X2𝑖(F[0,6](𝑐 = 𝑢0) ∧XF[0,6](𝑐 ̸= 𝑢1)) (4)

⋀︁𝑛−1

𝑖=0
X𝑖F(𝑐𝑖 = 𝑢𝑖) (5)⋀︁𝑛−1

𝑖=0
X𝑖((¬𝑐)U (𝑐 = 𝑢𝑖)) (6)⋀︁𝑛−1

𝑖=0
X2𝑖(F(𝑐 = 𝑢0) ∧XF(𝑐 ̸= 𝑢1)) (7)

We complemented the scalable formulas with 38 different co-safety formulas of size ranging from 2 to

179, paired with different plants. The minimum, maximum and average running time were respectively

88 ms, 2332345 ms and 65291.2 ms.

Overall, the toolchain is efficient for small or easy to solve formulas, and it scales with the complexity

of the reactive synthesis phase.

9. Conclusions and Future Work

In this paper, we formalized the requirements of fulfilling some temporal reachability properties ASAP

for a controller assuming some constraints on the environment. In order to do that, we formalized

the optimal model checking problem w.r.t. LTL with a quantitative semantics able to capture the time

needed to fulfill a property and so that its optimal model checking problem corresponds to check the

ASAP requirement. Finally, we provided a reduction to standard co-safety synthesis. A proof-of-concept

evaluation shows that the approach is indeed feasible. The paper opens various problems left for

future work, e.g., how to solve the optimal model checking with other semantics, how to generalize the

reduction to synthesis to support larger fragments of ASAP LTL, and how to scale up the verification

for example exploiting incremental approaches.

Acknowledgments: The authors want to thank all the anonymous reviewers of OVERLAY 2024 for

the insightful comments on a preliminary version of this paper.

References

[1] Alessandro Cimatti, Luca Geatti, Nicola Gigante, Angelo Montanari, and Stefano Tonetta. Extended

bounded response LTL: a new safety fragment for efficient reactive synthesis. Form Methods Syst

Des, 2021.

[2] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti,

Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The nuXmv Symbolic Model

Checker. In CAV, volume 8559 of LNCS, pages 334–342. Springer, 2014.

[3] Shaull Almagor, Orna Kupferman, Jan Oliver Ringert, and Yaron Velner. Quantitative Assume

Guarantee Synthesis. In CAV, volume 10427, pages 353–374, 2017.

[4] Shaull Almagor, Udi Boker, and Orna Kupferman. Formally reasoning about quality. J. ACM, 63(3),

06 2016.

[5] Orna Kupferman and Moshe Vardi. Model checking of safety properties. Formal Methods in System

Design, 19, 1999.

[6] Wolfgang Thomas. Optimizing winning strategies in regular infinite games. In SOFSEM, volume

4910 of LNCS, pages 118–123. Springer, 2008.

[7] Michael Holtmann and Christof Löding. Memory Reduction for Strategies in Infinite Games. In

CIAA, volume 4783 of LNCS, pages 253–264. Springer, 2007.

[8] Florian Horn, Wolfgang Thomas, Nico Wallmeier, and Martin Zimmermann. Optimal strategy

synthesis for request-response games. RAIRO Theor. Informatics Appl., 49(3):179–203, 2015.

[9] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. Module Checking. Inf. Comput., 164(2):322–

344, 2001.

[10] Tzanis Anevlavis, Matthew Philippe, Daniel Neider, and Paulo Tabuada. Being correct is not

enough: Efficient verification using robust linear temporal logic. ACM Trans. Comput. Logic, 23(2),

2022.

[11] Patricia Bouyer, Nicolas Markey, and Raj Mohan Matteplackel. Averaging in LTL. In CONCUR,

volume 8704 of LNCS, pages 266–280. Springer, 2014.

[12] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages. ACM

Trans. Comput. Log., 11(4):23:1–23:38, 2010.

[13] Manfred Droste, Gustav Grabolle, and George Rahonis. Weighted Linear Dynamic Logic. Int. J.

Found. Comput. Sci., 35(1&2):145–177, 2024.

[14] Marco Faella, Axel Legay, and Mariëlle Stoelinga. Model Checking Quantitative Linear Time Logic.

In QAPL, number 3 in Electronic Notes in Theoretical Computer Science, pages 61–77. Elsevier,

2008.

[15] Paul Gastin and Benjamin Monmege. A unifying survey on weighted logics and weighted automata.

Soft Comput., 22(4):1047–1065, 2018.

[16] Yongming Li, Manfred Droste, and Lihui Lei. Model checking of linear-time properties in multi-

valued systems. Inf. Sci., 377:51–74, 2017.

[17] Rafael Dewes and Rayna Dimitrova. Compositional high-quality synthesis. In Automated Technol-

ogy for Verification and Analysis, pages 334–354. Springer Nature Switzerland, 2023.

[18] Ami Sakakibara, Natsuki Urabe, and Toshimitsu Ushio. Finite-Memory Supervisory Control

of Discrete Event Systems for LTL[ℱ] Specifications. IEEE Transactions on Automatic Control,

67(12):6896–6903, 2022.

[19] Shaull Almagor and Orna Kupferman. Good-enough synthesis. In CAV, pages 541–563, 2020.

[20] Benjamin Aminof, Giuseppe De Giacomo, and Sasha Rubin. Best-Effort Synthesis: Doing Your

Best Is Not Harder Than Giving Up. In IJCAI, pages 1766–1772, 2021.

[21] Benjamin Aminof, Giuseppe De Giacomo, and Sasha Rubin. Reactive Synthesis of Dominant

Strategies. In AAAI, pages 6228–6235, 2023.

[22] Benjamin Aminof, Giuseppe De Giacomo, Alessio Lomuscio, Aniello Murano, and Sasha Rubin.

Synthesizing Best-effort Strategies under Multiple Environment Specifications. In KR, pages 42–51,

2021.

[23] Morteza Lahijanian, Shaull Almagor, Dror Fried, Lydia E. Kavraki, and Moshe Y. Vardi. This Time

the Robot Settles for a Cost: A Quantitative Approach to Temporal Logic Planning with Partial

Satisfaction. In AAAI, pages 3664–3671, 2015.

[24] Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER 1.9 and beyond. Technical Report 11/2,

Institute for Formal Models and Verification, Johannes Kepler University, 2011.

	1 Introduction
	2 Example
	3 Notations and Preliminary Definitions
	4 Optimal Model Checking
	5 ASAP LTL
	6 Reduction of ASAP LTL Model Checking to Reactive Synthesis
	7 Related work
	8 Proof of Concept Evaluation
	9 Conclusions and Future Work

