

NeuroSymbolic Artificial Intelligence Between probability and fuzzyness

Luciano Serafini

Fondazione Bruno Kessler Trento, Italy

November 7, 2023

Table of Contents

1 Introduction

- 2 Connecting SubSymbolic and Symbolic Models
- **3** NeSy based on Fuzzy Semantics
- 4 NeSy based on Probabilistic semantics

5 Conclusions

Introduction

Symbolic Knowledge Representation

Agents's knowledge is represented by logical theories (set of sentences of a logical language) stating properties about relational structures

- declarative semantics gives a meaning to each sentence, supporting compositionality ⇒ reasoning on logical consequence
- appropriate to represent knowledge about structurally intricated domains, which require complex combinatorial reasoning.

Introduction

Symbolic Knowledge Representation

Agents's knowledge is represented by logical theories (set of sentences of a logical language) stating properties about relational structures

- declarative semantics gives a meaning to each sentence, supporting compositionality ⇒ reasoning on logical consequence
- appropriate to represent knowledge about structurally intricated domains, which require complex combinatorial reasoning.

SubSymbolic Knowledge Representation

Agent's knowledge is represented by means of real (high complex) functions (e.g., regression, classification, clustering, generative models).

- differentiability w.r.t, a set of parameters ⇒ automatic learning by gradient-based optimization.
- appropriate represents knowledge about regularities on large and continuous dataspaces.

Structured Domains with Continuous Dates Reserved

• Semantic image understanding with background knowledge

 $\forall x, y(kicks(x, y) \rightarrow player(x) \land ball(y))$ $\forall xy(color(jersy(x), z) \land color(jersy(y), z) \rightarrow team(x) = team(y))$

I. Donadello, L. Serafini, and A. S. d'Avila Garcez (2017). "Logic Tensor Networks for Semantic Image Interpretation". In: *IJCAI*, pp. 1596–1602

L. Serafini (FBK)

November 7, 2023 4 / 33

Structured Domains with Continuous Dates Articles

- Neuro-Sybolic verification of deep neural networks
 - robustness to adversarial attack

$$oldsymbol{x} pprox oldsymbol{y} o oldsymbol{N}_{traffic_light}(oldsymbol{x} \mid oldsymbol{ heta}) pprox oldsymbol{N}_{traffic_light}(oldsymbol{y} \mid oldsymbol{ heta})$$

 Fairness: the output of a neural network N is not influenced by a sensitive feature (e.g., gender)

$$m{x}_{-gender} = m{y}_{-gender} o m{N}_{loan}(m{x} \mid m{ heta}) = m{N}_{loan}(m{y} \mid m{ heta})$$

Neuro-Symbolic Assertion Language inspired Hoare logic [Hoare, 1969] Xuan Xie, Kristian Kersting, and Daniel Neider (2022). "Neuro-Symbolic Verification of Deep Neural Networks". In: *Thirty-First International Joint Conference on Artificial Intelligence*. IJCAI, pp. 3622–3628

Structured Domains with Continuous Dates of the sector

• Generate knowledge graph embeddings that are consistent with background ontologies

A Rivas et al. (2023). "A Neuro-Symbolic System over Knowledge Graphs for Link Prediction". In: *Semantic Web*

Table of Contents

Introduction

2 Connecting SubSymbolic and Symbolic Models

- **3** NeSy based on Fuzzy Semantics
- 4 NeSy based on Probabilistic semantics

5 Conclusions

- an agents sees the external world via perceptions
- learned real functions associated to each perception an internal representation (class, cluster, embedding, ...) of the observed phenomena
- we could use real functions to solve the grounding problem by
- grounding each internal symbol to a real function¹

¹A constant value is 0-ary real function

NeSy AI - Overlay ws AIxIA 2023

November 7, 2023 7 / 33

NeSy AI - Overlay ws AIxIA 2023

November 7, 2023 8 / 33

NeSy AI - Overlay ws AIxIA 2023

NeuroSymbolic AI

 Neurally inspired models represent knowledge in terms of real valued models. From a very abstract viewpoint a neural model of a parametric function

 $f(\cdot \mid \boldsymbol{ heta}_f) : S_i(\mathbb{R}) \longrightarrow S_0(\mathbb{R}) \qquad \qquad \boldsymbol{ heta}_f \in \boldsymbol{\Theta}_f$

where $S_i(\mathbb{R})$ and $S_o(\mathbb{R})$ is structured data on real numbers, which are the input and output of the model $f(\cdot | \theta_f)$.

NeuroSymbolic AI

 Neurally inspired models represent knowledge in terms of real valued models. From a very abstract viewpoint a neural model of a parametric function

 $f(\cdot \mid \boldsymbol{ heta}_f) : S_i(\mathbb{R}) \longrightarrow S_0(\mathbb{R}) \qquad \qquad \boldsymbol{ heta}_f \in \boldsymbol{\Theta}_f$

where $S_i(\mathbb{R})$ and $S_o(\mathbb{R})$ is structured data on real numbers, which are the input and output of the model $f(\cdot | \theta_f)$.

 symbolic models Represent knowledge by means of a theory which is a set of sentences of a logical language in a signature Σ, closed under logical consequence:

 $T \subset \mathcal{L}(\Sigma)$

NeuroSymbolic AI

 Neurally inspired models represent knowledge in terms of real valued models. From a very abstract viewpoint a neural model of a parametric function

 $f(\cdot \mid \boldsymbol{ heta}_f) : S_i(\mathbb{R}) \longrightarrow S_0(\mathbb{R}) \qquad \qquad \boldsymbol{ heta}_f \in \boldsymbol{\Theta}_f$

where $S_i(\mathbb{R})$ and $S_o(\mathbb{R})$ is structured data on real numbers, which are the input and output of the model $f(\cdot | \theta_f)$.

 symbolic models Represent knowledge by means of a theory which is a set of sentences of a logical language in a signature Σ, closed under logical consequence:

$T \subset \mathcal{L}(\Sigma)$

 Neuro-Symbolic models combine neural models and symbolic models by interpreting (some of) the symbols σ ∈ Σ is a neural model

$$\langle T, \mathcal{G}
angle \qquad T \subseteq \mathcal{L}(\Sigma) \qquad \mathcal{G} : \sigma \mapsto f_{\sigma}(\cdot \mid \boldsymbol{\theta}_{\sigma}) \qquad \sigma \in \Sigma$$

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・ ・ 日

- learning grounding Given some knowledge about a set of symbols Σ, learn the groundings of some or all symbolis in Σ.
 - in ML this is analogous to training
 - In KR this is analogous to maximum satisfiability
- answering queries Given some knolwedge about a set of grounded symbols Σ , determine the truth value of a query ϕ .
 - in ML and KR this is called inference.

L. Serafini (FBK)

NeSy AI - Overlay ws AIxIA 2023

November 7, 2023 13 / 33

•
$$c^{\mathcal{G}} = \langle 2.1, 3 \rangle$$

L. Serafini (FBK)

NeSy AI - Overlay ws AIxIA 2023

November 7, 2023 13 / 33

NeSy AI - Overlay ws AIxIA 2023

NeSy AI - Overlay ws AIxIA 2023

•
$$d^{\mathcal{G}} = \langle 3.4, 1.5 \rangle$$

•
$$f^{\mathcal{G}}: \vec{x}, \vec{y} \mapsto \vec{x} - \vec{y}$$

•
$$P^{\mathcal{G}} : \vec{x} \mapsto \exp((-||\vec{x} - \vec{\mu}||^2)),$$

with $\mu = (2,3)$

Discrete vs continous

... but we ignore one important aspect ...

- how do we interpret a value in [0, 1] as the truth of a proposition?
- two options:
 - extends the st of truth values to the whole interval [0, 1]: fuzzy logic
 - interprets the values in [0,1] as the probability of truth: probability logic

L. Serafini (FBK)

NeSy AI - Overlay ws AIxIA 2023

Table of Contents

Introduction

2 Connecting SubSymbolic and Symbolic Models

3 NeSy based on Fuzzy Semantics

4 NeSy based on Probabilistic semantics

5 Conclusions

NeSy based on Fuzzy Logic

Definition (Grounding of formulas)

The grounding of formulas is recursively defined according to their structure, and the fuzzy semantics of connectives.

•
$$P(t_1, ..., t_n)^{\mathcal{G}} = P^{\mathcal{G}}(t_1^{\mathcal{G}}, ..., t_n^{\mathcal{G}})$$

• $(\phi \land \psi)^{\mathcal{G}} = \max(\phi^{\mathcal{G}} + \psi^{\mathcal{G}} - 1, 0)$
• $(\phi \rightarrow \psi)^{\mathcal{G}} = \min(1 - \phi^{\mathcal{G}} + \psi^{\mathcal{G}}, 1)$
• $(\phi \lor \psi)^{\mathcal{G}} = \min(\phi^{\mathcal{G}} + \psi^{\mathcal{G}}, 1)$
• $(\neg \phi)^{\mathcal{G}} = 1 - \phi^{\mathcal{G}}$

Samy Badreddine et al. (2022). "Logic tensor networks". In: Artificial Intelligence 303, p. 103649

- $c^{\mathcal{G}} = \langle 2.1, 3 \rangle$
- $d^{\mathcal{G}} = \langle 3.4, 1.5 \rangle$
- $f^{\mathcal{G}}: \vec{x}, \vec{y} \mapsto \vec{x} \vec{y}$
- $P^{\mathcal{G}}: \vec{x} \mapsto \exp\left(-(\vec{x} \vec{\mu})^2\right)$

<ロト < 同ト < ヨト < ヨト

- 3

- $c^{\mathcal{G}} = \langle 2.1, 3 \rangle$
- $d^{\mathcal{G}} = \langle 3.4, 1.5 \rangle$
- $f^{\mathcal{G}}: \vec{x}, \vec{y} \mapsto \vec{x} \vec{y}$
- $P^{\mathcal{G}}: \vec{x} \mapsto \exp\left(-(\vec{x} \vec{\mu})^2\right)$
- $P(c)^{\mathcal{G}} = exp(-||c^{\mathcal{G}} \vec{\mu}||^2) = 0.990$

イロト イボト イヨト イヨト

3

- $c^{\mathcal{G}} = \langle 2.1, 3 \rangle$
- $d^{\mathcal{G}} = \langle 3.4, 1.5 \rangle$
- $f^{\mathcal{G}}: \vec{x}, \vec{y} \mapsto \vec{x} \vec{y}$
- $P^{\mathcal{G}}: \vec{x} \mapsto \exp\left(-(\vec{x} \vec{\mu})^2\right)$
- $P(c)^{\mathcal{G}} = exp(-||c^{\mathcal{G}} \vec{\mu}||^2) = 0.990$
- $P(d)^{\mathcal{G}} = exp(-||d^{\mathcal{G}} \vec{\mu}||^2) = 0.014$

イロト イボト イヨト イヨト

- 3

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・ ・ 日

Grounding FOL quantifiers

In fuzzy semantics

The semantics of $\forall x \phi(x)$ and $\exists x \phi(x)$ is given in terms of min and max aggregators

$$(\forall x \phi(x))^{\mathcal{G}} = \min_{\mathbf{x} \in \mathbb{R}^{k}} \phi(\mathbf{x})^{\mathcal{G}}$$
$$(\exists x \phi(x))^{\mathcal{G}} = \max_{\mathbf{x} \in \mathbb{R}^{k}} \phi(\mathbf{x})^{\mathcal{G}}$$

- $\min_{\mathbf{x}\in\mathbb{R}^k} \phi^{\mathcal{G}}(\mathbf{x})$ can not be computed directly, as it involves an uncountably infinite number of instances.
- It could be solved analytically, but this involves human intervention
- we approximate the semantics of quantifiers by domain sampling

•
$$c^{\mathcal{G}} = \langle 2.1, 3 \rangle$$

•
$$d^{\mathcal{G}} = \langle 3.4, 1.5 \rangle$$

•
$$f^{\mathcal{G}}: \vec{x}, \vec{y} \mapsto \vec{x} - \vec{y}$$

•
$$P^{\mathcal{G}}: \vec{x} \mapsto \exp - \left((\vec{x} - \vec{\mu})^2 \right)$$

•
$$c^{\mathcal{G}} = \langle 2.1, 3 \rangle$$

- $d^{\mathcal{G}} = \langle 3.4, 1.5 \rangle$
- $f^{\mathcal{G}}: \vec{x}, \vec{y} \mapsto \vec{x} \vec{y}$
- $P^{\mathcal{G}}: \vec{x} \mapsto \exp \left((\vec{x} \vec{\mu})^2 \right)$
- $(\forall x P(x))^{\mathcal{G}} = 0.000 \dots$

- $c^{\mathcal{G}} = \langle 2.1, 3 \rangle$
- $d^{\mathcal{G}} = \langle 3.4, 1.5 \rangle$
- $f^{\mathcal{G}}: \vec{x}, \vec{y} \mapsto \vec{x} \vec{y}$
- $P^{\mathcal{G}}: \vec{x} \mapsto \exp \left((\vec{x} \vec{\mu})^2 \right)$
- $(\forall x P(x))^{\mathcal{G}} = 0.000 \dots$
- $(\exists x P(x))^{\mathcal{G}} \approx 0.96$

Neuro Symbolic tasks

• learning grounding Let T be a set of formulas on a signature Σ and \mathcal{G} a grounding of Σ on the set of parameters θ_{Σ} .

$$\boldsymbol{\theta}_{\boldsymbol{\Sigma}}^* = \operatorname*{argmax}_{\boldsymbol{\theta}_{\boldsymbol{\Sigma}} \in \boldsymbol{\Theta}_{\boldsymbol{\Sigma}}} \mathcal{G} \left(\bigwedge_{\phi \in \mathcal{T}} \phi \middle| \boldsymbol{\theta}_{\boldsymbol{\Sigma}} \right)$$

• **answering queries** Let ϕ be a closed formula (query) the answer is the truth value computed as:

$$\mathcal{G}(\phi \mid \boldsymbol{\theta}_{\phi}^{*})$$

Table of Contents

Introduction

- 2 Connecting SubSymbolic and Symbolic Models
- **3** NeSy based on Fuzzy Semantics
- **WeSy based on Probabilistic semantics**

5 Conclusions

Problog

Domain

All the constants appearing in the program

```
D = \{mary, john\}
```

Herbrand base

All the variable free atoms of the program, + all the atoms obtained by replacing the variables of an atom with elements of the domain.

$$H = \begin{cases} burglary, earthquake, alarm, call \\ hears_alarm(mary), hears_alarm(john), \\ calls(mary), calls(john) \end{cases}$$

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・ ・ 日

Problog semantics

Possible world

let: $\mathbf{x} = (x_1, \dots, x_n), \mathbf{x}_i \subseteq \mathbf{x}$ Variables $\mathbf{a} = (a_1, \dots, a_n), \mathbf{a}_i \subseteq \mathbf{a}$ elements of the domain a possible world ω is defined as:

$$\omega: H \to \{0,1\}$$

such that for each h(a) which is not a probabilistic fact: $\omega(h(a)) = 1$ if and only if there is a rule

$$h(\mathbf{x}) := b_1(\mathbf{x}_1), \ldots, b_n(\mathbf{x}_n)$$

and

$$\omega(b_1(a_1)) = 1, \ldots \omega(b_n(a_n)) = 1$$

Worlds: example


```
0.1 :: burglary.
0.2 :: earthquake.
0.7 :: hears_alarm(mary).
0.4 :: hears_alarm(john).
alarm :- earthquake.
alarm :- burglary.
calls(X) :- alarm, hears_alarm(X).
call :- calls(X).
```

worlds	ω_1	ω_2	ω_3	 ω_i	 ω_n
burglary	0	1	0	 1	 1
earthquake	0	0	1	 0	 0
hears_alarm(mary)	0	0	0	 1	 1
hears_alarm(john)	0	0	0	 0	 1
alarm	0	1	1	 1	 1
calls(mary)	0	0	0	 1	 1
calls(john)	0	0	0	 0	 1
call	0	0	0	 1	 1
worldprobabilisty					

L. Serafini (FBK)

November 7, 2023 24 / 33

- 3

Worlds: example


```
0.1 :: burglary.
0.2 :: earthquake.
0.7 :: hears_alarm(mary).
0.4 :: hears_alarm(john).
alarm :- earthquake.
alarm :- burglary.
calls(X) :- alarm, hears_alarm(X).
call :- calls(X).
```

worlds	ω_1	ω_2	ω_3	 ω_i	 ω_n
burglary	0.9	0.1	0.9	 0.1	 0.1
earthquake	0.8	0.8	0.2	 0.8	 0.8
hears_alarm(mary)	0.3	0.3	0.3	 0.7	 0.7
hears_alarm(john)	0.6	0.6	0.6	 0.6	 0.4
alarm	0	1	1	 1	 1
calls(mary)	0	0	0	 1	 1
calls(john)	0	0	0	 0	 1
call	0	0	0	 1	 1
world probabilities	0.1296	0.0144	0.0324	 0.0336	 0.0224

L. Serafini (FBK)

NeSy AI - Overlay ws AIxIA 2023

November 7, 2023 25 / 33

- 3

Tasks

World probability

Probabilistic facts $p_1 :: f_1, p_2 :: f_2, \ldots, p_k :: f_k$

$$\mathcal{P}(\omega) = \prod_{\omega(f_i)=1} p_i \cdot \prod_{\omega(f_i)=0} (1-p_i)$$

Probability of a query

Let $q \in H$ a query. The probability of the query is

$$\mathbb{E}_P(\omega(q)) = \sum_{\omega} \omega(q) P(\omega)$$

э

DeepProblog

A DeepProbLog program is a ProbLog program that is extended with a set of ground neural annotated disjunctions

(simplified) Neural Annotated Disjunction

Is a clause of the form:

$$nn(f_q, \boldsymbol{x}, \boldsymbol{u}) :: q(\boldsymbol{x}, u_1); \ldots; q(\boldsymbol{x}, u_n).$$

Given an object o with features \mathbf{x} , let $\mathbf{y} = (y_1, \ldots, y_n)$ be the output of $f_q(\mathbf{x})$, the effect of the Neural Annotated Disjunction is the addition of the following probabilistic facts to the Problog program

y_1 :: q(o,u_1). y_2 :: q(o,u_2). . . y_n :: q(o,u_n).

Robin Manhaeve et al. (2018). "DeepProbLog: Neural Probabilistic Logica Company Robin Manhaeve et al. (2018).

Inference in ProbLog


```
0.2 :: earthquake.
0.1 :: burglary.
alarm :- earthquake.
alarm :- burglary.
0.5 :: hears_alarm(mary).
calls(mary) :- alarm,hears_alarm(mary).
query(calls(mary)
```


L. Serafini (FBK)

NeSy AI - Overlay ws AIxIA 2023

Learning in DeepProblog


```
nn(m_event,X,[eq,bu,no]) :: earthquake;burglary;none.
alarm :- earthquake.
alarm :- burglary.
0.5 :: hears_alarm(mary).
calls(mary) :- alarm,hears_alarm(mary).
query(calls(mary)
```

・ 同 ト ・ ヨ ト ・ ヨ ト

Learning in DeepProblog

The SSD for a given query and the neural network that computes the truth value of the neural atoms is the neuro-symbolic architecture that can be trained end-to-end

NeSy AI - Overlay ws AIxIA 2023

< ロ > < 同 > < 回 > < 回 >

Table of Contents

Introduction

- 2 Connecting SubSymbolic and Symbolic Models
- **3** NeSy based on Fuzzy Semantics
- 4 NeSy based on Probabilistic semantics

5 Conclusions

Conclusions

Challenges

- integration of large foundational models and large knowledge graphs
- scalability (especially in probabilistic-based NeSy)
- symbol discovering from supervised data
- Generative NeSy models how to use background knowledge of generative models
- Temporal NeSy models integrating temporal logic and recurrent neural architectures
- Training methods for NeSy architectures

Thanks for Listening

э

References I

Badreddine, Samy et al. (2022). "Logic tensor networks". In: Artificial Intelligence 303, p. 103649.

Donadello, I., L. Serafini, and A. S. d'Avila Garcez (2017). "Logic Tensor Networks for Semantic Image Interpretation". In: *IJCAI*, pp. 1596–1602.
Manhaeve, Robin et al. (2018). "DeepProbLog: Neural Probabilistic Logic Programming". In: *Advances in Neural Information Processing Systems*.
Rivas, A et al. (2023). "A Neuro-Symbolic System over Knowledge Graphs for Link Prediction". In: *Semantic Web*.

Xie, Xuan, Kristian Kersting, and Daniel Neider (2022). "Neuro-Symbolic Verification of Deep Neural Networks". In: *Thirty-First International Joint Conference on Artificial Intelligence*. IJCAI, pp. 3622–3628.