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Abstract
This is a summary of [1], which o�ers an approach to synthesize safe supervisors for systems speci�ed
by means of Timed Automata.
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1. Introduction

Supervisory control theory (SCT) was �rst introduced by Ramadge-Wonham to control discrete-
event systems (DES) [2]. SCT provides a synthesis method resulting in a supervisor that restricts
the plant behavior towards a given desired behavior. The synthesized supervisor additionally
satis�es controllability, nonblockingness, and maximal permissiveness [3].
DES, such as communication networks, manufacturing and tra�c systems, are typically

modeled using extended �nite automata (EFA) [4], which are �nite automata extended with
discrete variables. In EFA, transitions are labeled by events and associated with constraints
on variables (guards), where variables may be updated after the occurrence of an event [4].
The dynamics of DES depend entirely on the ordering of the event occurrences, and so are
independent of time [5]. Due to lack of timing information, modeling systems as EFA is not
suitable for model checking and veri�cation of real-time systems [6]. To make this possible,
among others the concept of timed automata (TA) has been introduced [6]. A TA consists of
a �nite set of locations and a �nite set of real-valued clocks [7]. A clock constraint, called an
invariant, is associated to each location and determines the maximal time that the system is
allowed to stay in that location. Each edge between two locations is labeled by an event, a
clock constraint called the guard, and a set of clocks that are reset to zero, called the reset, upon
an occurrence of that event. The formalism of TA and accompanying analysis methods have
originally been introduced for modelling timed systems and model checking temporal logic
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properties for those [6]. In general, the control of TA is challenging due to the clock variables,
making the state space of TA in�nite. In [1], supervisor synthesis for TA is provided such that:

• an algorithm is proposed thatworkswith automata instead of languages to ease integration
of an implementation in a tool set such as CIF or Supremica [8, 9],

• the synthesized supervisor is maximally permissive, controllable, and nonblocking,
• forcible events (i.e., events which the supervisor can force to occur (if the plant allows
the event) from TDES [10] are used to allow a supervisor to preempt time progress, and

• the notion of clock regions of timed automata is adapted in a speci�c way for supervisory
control synthesis (details are available in [1]).

The synthesis of maximally permissive supervisors is especially relevant in cases where
an AI-engine is assumed to assist in making decisions about the future behaviour of a plant.
Putting a synthesized maximally permissive supervisor in between the plant and the AI-engine
guarantees that the AI-engine may only invoke safe commands to the plant.

2. Overview of the synthesis problem and the synthesis method

In supervisory control we use a model of the uncontrolled system (and a model of the re-
quirements the controlled system should satisfy). We use deterministic TA for both purposes.
Informally speaking, a TA is an FA extended with a �nite set of real-valued clocks. To model the
timing behavior of TA, the temporal conditions to switch between di�erent modes (locations) or
to stay in the current one are represented by clock constraints [6, 11]. Clock constraints are of
the form x ⇠ n or x� y ⇠ n for clocks x, y 2 C , natural number n 2 N and comparison oper-
ator ⇠2 {<,=, >} and may be combined with conjunction (^) and disjunction (_). Invariants
of locations are indicated inside the locations. Absence of an invariant in a location represents
the invariant that always holds. The initial location is depicted by a dangling incoming arrow,
and the marked locations by double circles.
Applications are typically modeled by a network of automata, where each automaton rep-

resents a single component or subsystem. A single automaton representing the network of
automata can then be generated as the synchronous product of the constituent automata. If
two TA share a clock variable, then this clock variable can only be reset if both TA do so. A
consequence of this is that such a reset can only occur on an edge with a shared event.
The Basic TSC Synthesis Problem is: Given a plant model G as a TA, synthesize a timed

supervisor S as a TA, such that

• S is controllable w.r.t. G, which means that the supervisor may not disable any uncon-
trollable events from occurring in the plant,

• S||G is nonblocking, i.e., from any reachable state a marked state should be reachable,
• S is maximally permissive, which requires that the supervisor restricts the behaviour of
the plant as little as possible in order to achieve controllability and nonblocking.

In [1], an algorithm is proposed that computes a solution to this synthesis problem. It is also
shown that this algorithm terminates, and results in a supervisor that has the aforementioned
properties. A high-level overview of the operation of this algorithm is given in Figure 1.



The algorithm iteratively strengthens the invariants and guards of the plant automaton in
order make blocking states unreachable while respecting controllability (i.e., the guards of
uncontrollable events are never strengthened). Both the nonblocking condition and bad-state
condition computations are similar to those used in synthesis algorithms for EFA [12].
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Figure 1: Overview of the synthesis algorithm.

The synthesis procedure has two loops. In Loop-1 the guards are adapted to obtain a supervisor
that prevents reaching the bad states by adapting the guard of each edge labeled by a controllable
event. The e�ect of forcible events preempting time events is taken into account in the invariant
adaptation (Loop-2). The invariant of a location can be changed only if there exists an edge
labeled by a forcible event starting from that location.
In [1], also the problem where (safety) requirements are used is stated and solved. Such

requirements are represented by timed automata as well (and do not share clocks with the plant).
Intuitively speaking a supervisor achieves safety in case the controlled system behaviour is
restricted to the behaviour speci�ed by the requirements (i.e., does not violate the requirements).
The solution relies on transforming the problem statement with safety requirements into the
setting without. A detailed explanation of the transformation is provided in [1].

3. Train-gate controller

In this section, we consider the veri�cation example from [6, 13] and modify it for synthesis.
The TA representing the train and gate are taken from [6, 13] and are depicted in Figure 2. The
events approach and out for the train, and the events down and up for the gate are assumed
to be uncontrollable. Moreover, the events raiseE and lowerE of the gate are assumed to be
forcible. The system in [6, 13] also involves an automatic controller, to open and close the gate
in a railroad crossing. The control requirements are as follows [6]:

• Safety: if the train is inside the gate, the gate is closed.
• Liveness: the gate is never closed more than 10 time units.

In [6, 13], the system is assessed to be safe by analysing the timing constraints: they say that
with the gate-controller, that is part of the system, the event down always precedes the event
in, so the system is always safe. We do not consider such a controller to already be given. We



synthesize a supervisor that is correct-by-construction, and more importantly this supervisor
guarantees controllability, nonblockingness, and maximal permissiveness.
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Figure 2: Train automaton and gate automaton. Safety and liveness requirements for train-gate system.
Locations are represented by circles and the edges by arrows from the source location to the target
location, labelled with the event, the guard and the reset. Edges representing uncontrollable events are
dashed. Forcible events are underlined. The reset of a clock x is denoted by x := 0.

The safety and liveness requirements are represented by the two rightmost TA in Figure 2.
The supervisor synthesized by applying the synthesis algorithm from [1] is given in Figure 3.
In this �gure, the synchronous product of the train-gate and control requirements is indicated
in black and the adaptations made by the supervisor in red. The supervisor obtained through
synthesis allows more behavior than the (manually constructed) controller given in [6, 13]. For
instance, in their controller the event lowerE is not enabled before the train approaches, while
this is allowed by the synthesized supervisor.
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Figure 3: Synthesized supervisor for train-gate system.
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