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Abstract
We investigate different machine learning techniques to learn the semantics of graph representable
formal models. Graph neural networks (GNN), which are able to learn any invariant function over
graphs, became quite popular in recent years. We give empirical results on how well GNN perform in
learning the semantics of nondeterministic finite automata (NFA). As our first results are positive, we
discuss possible approaches to embed NFA in vector spaces such that their semantics are represented
sufficiently and, thus, more classical ML techniques are applicable.
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1. Introduction

Without any doubt, machine learning (ML), especially deep learning, has revolutionized many
research fields in computer science and their applications in the past decades. Deep learning
has achieved tremendous success in previously hard-to-solve tasks such as image recognition
[1] or natural language understanding and processing [2]. However, this rapid rise also comes
with a downside: high applicability of machine learning techniques also includes safety-critical
applications and therefore a need for formal guarantees about such techniques. Unfortunately,
there still is a lack of ways to combine formal methods (FM) and ML.

Recently, research on deep learning techniques for structured data gained popularity, driven
by the success of graph neural networks (GNN), which compute functions over graphs by first
learning suitable vector embeddings of the graphs [3]. Morris et al. [4] and Xu et al.[5] showed
that the expressability of GNN is characterised by the combinatorial Weisfeiler-Lehman (WL)
algorithm, an influential algorithm for graph isomorphism tests. It turns out that for any pair
of graphs a GNN without randomly initialized parameters gives a different output if and only
if (the one dimensional) WL algorithm distinguishes these graphs. However, with randomly
initialized parameters GNN can learn any invariant function over graphs and, hence, are more
expressive than the WL algorithm. These results and their implications are thoroughly described
in [6].
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Figure 1: NFA represented as a directed and labeled graph. The language of this NFA are words𝑤 over
{𝑎, 𝑏}* such that 𝑤 does not include the subword 𝑎𝑏𝑏𝑎. The label 𝐼 indicates an initial state and 𝐹 a
final state.

We claim that the high expressability of GNN motivates new ways to combine FM and ML in
the sense that GNN are able to learn from formal models, which are representable as graphs.
One of the most common of such models is the model of nondeterministic finite automata (NFA).
To start our investigation, we try answering the question

“How well do GNN perform in learning the semantics of NFA represented as graphs?”.

To do this, we train GNN to distinguish NFA based on their semantics. In Sec. 2 we introduce
some necessary concepts and present the results of our first experiments in Sec. 3. It turns out
that GNN perform surprisingly well in distinguishing NFA, which strongly indicates that the
model GNN is able to learn from graph representable formal models. This positive outcome
immediately raises the question of which features the GNN learns from the graph representation
of an NFA to represent its semantics in the form of real-valued vectors. As it is well-known that
neural networks suffer from a lack of interpretability, we need to look at other techniques to
understand which features are suitable to represent NFA semantics in vector spaces. For this,
we discuss some more classical ML techniques in Sec. 4. In the last section, Sec. 5, we provide
guidance on where and how this type of research can be helpful.

2. Fundamentals

Finite Automata A nondeterministic finite automaton (NFA) 𝒜 for a given alphabet Σ has a
finite set of states 𝑄, for each letter in Σ a binary relation on 𝑄 and two subsets of 𝑄 called
initial and final states. The language 𝒜 is a subset of words from Σ* that includes all words 𝑤
such that there is a 𝑤-labeled path from some initial state to some final state. Following this
definition, an NFA can be represented as a graph with labeled and directed edges and labeled
nodes. An example is given in Fig. 1.

GNN and MPNN Graph Neural Networks (GNN) are a deep learning framework for the
computation of functions over graphs. The general idea of GNN is that the model learns a
suitable representation of the input graphs, which is then used to compute the desired function.
There are several categories of GNNs like RecGNN and spectral-based or spatial-based ConvGNN



Metric Best Overall Results

Accuracy 94%
Specificity 93%
Sensitivity 95%

Figure 2: Depiction of best experiments and corresponding accurracy, specificity and sensitivity on
the test dataset per number of training epochs (line chart). The results of the overall best experiment,
which happened with 60 training epochs, are depicted in the table on the right.

[3]. We focus on spatial-based ConvGNN, which follow the more general framwork of message-
passing neural network (MPNN) [7]. GNN of this kind compute the graph representation via a
message passing process between the nodes of the input graph. More details can be found in
[8] or [9].

Graph Kernels Kernels are functions used to quantify the similarity between pairs of objects.
Let 𝑂 be a set of objects. A kernel is a function 𝑂 ×𝑂 → R which is symmetric and positive
semidefinite. In the case of graph kernels the set 𝑂 is the set of graphs. Graph kernels can be
categorized into kernels based on aggregated neighbourhood information, kernels based on
assignment and matching qualities, kernels based on occurring subgraph patterns and kernels
based on walks and paths [10]. An important kernel of the first category is the Weisfeiler-Lehman
kernel [11] which is based on the Weisfeiler-Lehman algorithm for ismorphism testing.

Graph Embedding Graph embedding techniques are used to find embeddings of graphs in
real-valued vector spaces that preserve relevant properties of the input graph. This can be
done in form of node embeddings, where each node is represented as a vector, edge embeddings,
where each edge is represented as a vector, or as whole-graph embeddings, where the whole
graph is represented as a single vector [12].

3. Experiments on Learning the Semantics of NFAWith GNN

Let 𝐿 be the language of all finite words over {𝑎, 𝑏}* that do not contain the subword 𝑎𝑏𝑏𝑎.
We trained GNN for binary classification on a labeled dataset of 178 manually generated NFA.
Each NFA is labeled with 1 if its language is equal to 𝐿 and 0 if it is not. A corresponding NFA
with label 1 is given in Fig. 1. Thus, we trained GNN to decide whether the language of an NFA,
given as a graph, is equal to 𝐿 or not.

In our experiments we used GNN consisting of two graph convolution layers according to
[7] followed by two classic linear layers. We used a sigmoidal output activation and binary



cross-entropy as loss function. In the training procedure we used ADAM [13] for parameter
optimization and for hyper-parameter optimization we used the Tune [14] framework. We made
a random train-validation-test split of the dataset and used 60% of the data for training, 20%
for validation and 20% for testing.

Our best results are depicted in Fig. 2. In general, the GNN performed well in distinguishing
NFA based on their semantics. In the overall best experiment we achieved an accuracy, specificity
and sensitivity ≥ 90% on the test dataset. This strongly implies that the GNN model is
able to learn relevant features needed to represent the semantics of NFA from their graph
representations.

4. Other Approaches for Learning the Semantics of NFA

Graph kernels define similarity measures on graphs and, thus, enable the application of a wide
range of machine learning techniques, so called kernel methods. Due to our first positive results
with the GNN model, kernels which use neighborhood information seem promising for our
application as these kernels work similarly to the techniques used in the representation learning
of GNN based on the MPNN framework. In particular, it is worth taking a look at prominent
variants of the WL-kernel [11] as they compute an explicit feature vector for each graph [10].
Additionally, kernels that use path information seem promising as well, as the semantics of an
NFA are equivalent to the set of paths from any initial state to any final state.

Most graph kernels do not compute an explicit representation of the input graph. Therefore,
direct graph embeddings [12] of NFA seem useful to create a better understanding of important
features for learning the semantics of NFA. Furthermore, it allows the application of common
ML techniques like Multi-Layer Perceptrons.

5. Outlook

We have begun to empirically investigate how well GNN can learn from formal models. Specifi-
cally, we have investigated how well GNN can learn the semantics of NFA from their graph
representation. Based on our first experiments, it is strongly indicated that learning from formal
models with GNN is possible. However, to add more robustness to these results, we intend to
expand our experiments to different languages and corresponding NFA, as well as extending
our dataset by size and variation.

We intend to place this research in the broader context of combining formal methods and
machine learning. Robust results about ways to represent the semantics of formal models like
NFA in such ways that ML techniques can be applied to them, opens up new ways to include
formally specified information in typical ML applications. It remains to be seen how well such
ideas generalize to different formal models.
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