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Answer Set Programming

Introduction

• Declarative programming paradigm, based on logic

• Suited for combinatorial search and optimization problems

• For examples:
! Configurations
! Scheduling
! Planning
! · · ·

• Strengths: flexible, intuitive, expressive, e�cient systems
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Answer Set Programming

ASP Declarative Approach

“Describe the problem/solutions” VS “List the steps to solve it”

⇥4

???

ASP Input

Enc

Instances
I

ASP System
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Solver

Answer
Sets

model

solve
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Answer Set Programming

ASP Input

When the users model a problem, they define two elements:

• Encoding:

! General rules
! Describe objects and relations

in the problem
! E.g., grid, queens attack

• Instance:

! Specific input
! Drawn from a set of valid

instances
! Number(s), graph, etc.

⇥n

n = 4
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Answer Set Programming

ASP System

Enc

I

GROUNDER EncI SOLVER AS(EncI )

1 GROUNDER:
! Combines the information between Enc and I

! Result: EncI , which defines concrete elements and conditions

2 SOLVER

! Searches for the truth assignments that are answer sets (solutions)
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Answer Set Programming

(Intuitive) Solving Procedure
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Practical Issues with Symmetries

Issues with Industrial Applications

• Huge instances, no answer

• Several techniques for coping with di↵erent issues

• In this talk: symmetries!

• The encoding Enc highly influences the search performance

• It should avoid symmetries, exploit invariants of instances, etc.
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Practical Issues with Symmetries

What is a Symmetry?

• A symmetry entails equivalent characteristics to another object, e.g.,
truth assignments

• Symmetric solutions

• Symmetric (partial) interpretations
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Practical Issues with Symmetries

How do we deal with symmetries?

• Modelling a problem to avoid symmetric solutions is hard

• Automatically identify symmetric solutions and extend a given model
with constraints discarding them

! Instance-specific
! Model-oriented
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Practical Issues with Symmetries

Instance-Specific Approaches to Symmetry Breaking

Remove the symmetries according to syntactic properties of the current
problem instance [4] by adding Symmetry Breaking Constraints (SBCs)

Instance-Specific SBCs

1 Define a reduction to graph automorphism problem

2 Use tools to find symmetric vertex permutations, e.g. saucy [2]

3 Derive symmetries of the original problem from vertex permutations

4 Add SBCs according to a certain criterion (e.g., lexicographic order)
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Practical Issues with Symmetries

Symmetry Breaking Answer Set Solving

sbass [3] implements automatic symmetry detection and breaking for
ground ASP programs

Enc

I

Instance-specific SBCs approach

SBASS

EncI

+
SBCI

SOLVER
AS(EncI +
SBCI )

Limitations of instance-specific SBCs approaches

1 No generalisation
2 Interpretability

3 Pre-processing overhead
4 Redundancy
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Practical Issues with Symmetries

Model-Oriented Approach

Enc

Training set

S I

Create examples for Inductive Logic Programming task

SBASS

EncI

+
SBCI

ILASP C

Update Enc with C

Learning Framework

Input: “naive” encoding Enc , set of representative satisfiable instances S
! Identify symmetries of each instance in S

! Use the symmetries to create examples for an ILP task

Output: constraints C pruning redundant parts of the search space
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Learning E�cient Constrains

Learning E�cient Constraints in ASP

Simple Decision Problems

Version 1

IJCAI 2021 [5] & MLJ 2022 [6]

Complex Decision Problems

Version 2

ICLP 2022 [8]

Optimization Problems

Version 3

AAAI 2023 [7]

Research Goals

1 Define a model-oriented approach capable of lifting symmetries and
obtaining first-order constraints (for a target distribution)

2 Investigate extensions to enable learning constraints for advanced
combinatorial problems

3 Extend the expressiveness of the learning framework to analyse the
symmetries of optimization problems
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Learning E�cient Constrains

Learning Framework

Our learning framework is based on Inductive Logic Programming (ILP), a
form of learning that extends given background knowledge with new
hypotheses explaining a set of positive and negative examples

Input

Definition

Create

Examples

Solve

ILP Task
C  � Solve(Enc [ ABK , Examples, HM )

Update ABK

8i 2 Gen

define a general
positive example

[
Create

examples
8i 2 S

(4 approaches)
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Learning E�cient Constrains

Scalable Approach for Creating Examples

P

Training set

S i

GRINGO Pi

SBASS

CLINGO

API

⇧Pi

k

A ✓
AS(Pi )

Scalable Full-SBCs
• Exploit clingo api with the symmetries ⇧Pi

to explore only k cells
from the partition of AS(Pi )

• For each cell, the smallest element is a positive example, then create
MAX negative examples
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Learning E�cient Constrains

Scalable Approach for Creating Examples (Cont.)

For each instance i 2 S (set of representative satisfiable instances in input):

1 Sbass(Pi ) returns ⇧Pi

2 Clingo returns a1 2 AS(Pi )

3 Apply ⇧Pi
to a1 to identify its

symmetries

4 One positive example, MAX

sampled negative examples

5 Repeat the previous steps k times
or until no new solutions are found

a1
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Learning E�cient Constrains

Partner Units Problem (PUP)

• Abstract representation of a configuration problem originating from a
railway safety system of Siemens

• Extremely hard to solve this problem with real, large-scale instances

• “Naive” encoding + “standard” instances �! 99% symmetric
candidate solutions
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Learning E�cient Constrains

Simple ASP Encoding for PUP [1]

% Input
zone(Z) :- zone2sensor(Z,D).
sensor(D) :- zone2sensor(Z,D).
comUnit(1..n).

% Generate
1 { unit2zone(U,Z) : comUnit(U) } 1 :- zone(Z).
1 { unit2sensor(U,S) : comUnit(U) } 1 :- sensor(S).

% Constraint UCAP
:- comUnit(U), ucap+1 { unit2zone(U,Z): zone(Z) }.
:- comUnit(U), ucap+1 { unit2sensor(U,S): sensor(S) }.

% Constraint IUCAP
partnerunits(U,P) :- unit2zone(U,Z), zone2sensor(Z,S), unit2sensor(P,S), U!=P.
partnerunits(U,P) :- partnerunits(P,U), comUnit(U), comUnit(P).
:- comUnit(U), iucap+1 { partnerunits(U,P): comUnit(P) }.
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Learning E�cient Constrains

PUP Example

z1

s2

z4

s1

s6

z2

s4

z5

s3

s7

z3

s5

z6

u1

u2

u3

u4

(a) Partner Units Problem instance with
UCAP = IUCAP = 2

u1

z1 z4

s1

s3

u2

z2 z3

s2

s5

u4

s6

s7

u3

z5 z6

s4

(b) A solution for the instance

u2

z1 z4

s1

s3

u3

z2 z3

s2

s5

u1

s6

s7

u4

z5 z6

s4

(c) A symmetric solution
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Learning E�cient Constrains

Experiments

Enc SBASS Enc+SBCs(i) Enc+ABK Adv

dbl-10 0.02 0.04 0.02 0.01 0.01

un-dbl-10* 505.91 0.03 TO 0.01 0.16

dbl-20 1.06 0.31 1.40 0.08 0.53

un-dbl-20* TO 0.28 TO 0.34 TO

dbl-30 1.70 3.12 0.91 0.46 2.21

un-dbl-30* TO 3.19 TO 19.97 TO

dbl-40 TO 14.58 482.17 5.50 11.50

un-dbl-40* TO 9.52 TO 65.54 TO

dbl-50 TO 57.91 TO 54.89 542.09

• Three distributions of PUP instances: double, doublev, triple.

• Enc+ABK: the most e�cient constraints obtained from the samples.

• Adv: advanced encoding containing static symmetric breaking and
ordering rules.
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Learning E�cient Constrains

Learning E�cient Constraints in ASP

Simple Decision Problems

Version 1

IJCAI 2021 [5] & MLJ 2022 [6]

Complex Decision Problems

Version 2

ICLP 2022 [8]

Optimization Problems

Version 3

AAAI 2023 [7]

Optimization Problems

Research Goals

1 Define a model-oriented approach capable of lifting symmetries and
obtaining first-order constraints (for a target distribution)

2 Investigate extensions to enable learning constraints for advanced
combinatorial problems

3 Extend the expressiveness of the learning framework to analyse

the symmetries of optimization problems
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Extension for Optimization Problems
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Extension for Optimization Problems

Decision vs Optimization Problems

Pi

SBASS

⇧Pi

n

p

p

n

p n

p

n

• For decision problems, correct partition and representative solutions

• Sbass doesn’t parse weak constraints, thus incorrect examples

• Solution: add auxiliary normal rules defining a finer partition
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Extension for Optimization Problems

Decision vs Optimization Problems
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Conclusions and Future Works

Conclusions

• Design and implement a model-oriented approach for lifting SBCs

• Test it over some simple and advanced combinatorial problems
(decision and optimization)

• The learned constraints:
! are general and easier to interpret than ground SBCs
! obtain better-solving performance than the original program, the online

application of instance-specific SBCs approaches, and SBCs designed
by experts (for some type of instances)

• But wait ... there’s more!
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Conclusions and Future Works

Current Limitations

• Instances labelling has a critical impact on the framework applicability
! Automatically extract features and generalise them

• No transferable knowledge/no insights from the problem or instance
distribution
! Exploit the properties learned to define language bias (i.e., auxiliary

predicates)

• Interpretability of the learned constraints
! Explain to the user the meaning of the constraints learned
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Conclusions and Future Works

EX3 – EXtract, EXploit and EXplain Knowledge

Training Set

Enc

Instances Tr

EX3 system

Identifier of
Symmetries

Visualising
Tool

Machine Learning
System

ASP Input

Enc
0

Ins

ASP System

Grounder

Solver

Answer
Sets

model

visualize / investigate

interpret
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