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Aim
Aim

Goal

o To define a canonical colour refinement procedure.
e To optimise it as to get O((m + n)logn) time complexity.
@ To show that no faster algorithm of this kind is possible.

Why does it matter?

e Colour refinement is able to distinguish almost all pairs of
non-isomorphic graphs (Babai, Erdds, Selkov, 1980).

@ The assumptions on the algorithms this bound applies are very humble
and shared by all the main tools for practical graph isomorphism,
e.g. nauty (McKay, 1981) and traces (McKay, Piperno, 2014).
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Introduction Idea

Core idea

Hopcroft's idea
@ This algorithm is based on idea of "process the smallest half"
(Hopcroft, 1970), originally thought to tackle automata minimisation.
@ (Cardon, Crochemore, 1982) and (Paige, Tarjan, 1987) already

implemented algorithms with same running time, but do not provide a
canonical stable partition.
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Introduction Idea

Core idea

Hopcroft's idea
@ This algorithm is based on idea of "process the smallest half"
(Hopcroft, 1970), originally thought to tackle automata minimisation.
@ (Cardon, Crochemore, 1982) and (Paige, Tarjan, 1987) already

implemented algorithms with same running time, but do not provide a
canonical stable partition.

Algorithm’s core

© Start with unit partition (all vertices have the same colour).
@ Smartly choose a refining set R and a union of partition cells S.

© Use them to refine the previous partition until a stable colouring is
reached.
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Preliminaries

Partition

Given a simple graph G = (V, E) and v € V, denote its neighbourhood and
degree by N(v) :={u €V | (u,v) € E} and d(v) = |N(v)|, respectively.
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Given a simple graph G = (V, E) and v € V, denote its neighbourhood and
degree by N(v) :={u €V | (u,v) € E} and d(v) = |N(v)|, respectively.
Directed case

One can adapt every definition to the directed case by considering
out-/in-neighbourhood N*(v)/N~(v) and out-/in-degree d* (v)/d~ (v).
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Partition

Given a simple graph G = (V, E) and v € V, denote its neighbourhood and
degree by N(v) :={u €V | (u,v) € E} and d(v) = |N(v)|, respectively.

Directed case

One can adapt every definition to the directed case by considering
out-/in-neighbourhood N*(v)/N~(v) and out-/in-degree d* (v)/d~ (v).

Definition (Partition)

A partition m of V is a set of non-empty, pairwise-disjoint subsets of V'
whose union is V. Each S € 7 is called a cell of 7.

The order of 7 is |r|: 7 is discrete if |7| = |V|, unit if |7| = 1.

Equivalence relation: u ~ v(d:efMHS e m)(u,v € 9).
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Preliminaries

Partition

Given a simple graph G = (V, E) and v € V, denote its neighbourhood and
degree by N(v) :={u €V | (u,v) € E} and d(v) = |N(v)|, respectively.
Directed case

One can adapt every definition to the directed case by considering
out-/in-neighbourhood N*(v)/N~(v) and out-/in-degree d* (v)/d~ (v).

Definition (Partition)

A partition m of V is a set of non-empty, pairwise-disjoint subsets of V'
whose union is V. Each S € 7 is called a cell of 7.

The order of 7 is |r|: 7 is discrete if |7| = |V|, unit if |7| = 1.

Equivalence relation: u ~ v(d:efMHS e m)(u,v € 9).

V' C V is m-closed if it is the union of cells of 7.

S. Boscaratto (UniUD) Colour Refinement Complexity 05/12/2025 5/27



Stability and refinement

Definition (Stability)
A partition 7 of V is stable for the undirected simple graph G iff

(Yu,v € V)(VR € ) (u ~r v = [N(u) N R| = |N(®)n R|).
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Stability and refinement

Definition (Stability)
A partition 7 of V is stable for the directed simple graph G iff

(Vu,v € V)(VR € ) (u ~r v = [NT(u) N R| = |N*(v) N R|).

Definition (Refinement)

A partition p of V' refines a partition 7 if (Vu,v € V)(u =, v = u =~ v):
in this case, m < p (7 is coarser than p; p is finer than 7).
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Refining operation (R, 5)

Definition (Refining operation (R, S))
Given 7,7’ partitions of V, R, S C V m-closed, 7’ is obtained from 7 by a
refining operation (R, S) if
o (VS'em)(S'NS=0= 5" ex'), and
o (Vu,veS)(urrveumvA (VR em)(R CR=
INT(u) N R'| = |NT(v) N R)).

Meaning
@ Every m-cell not included in S is not touched by the operation,
i.e. just the m-cells of S are refined.

@ The n'-cells that are not also 7-cells are given by the nodes that have
the same number of neighbours in each 7-cell contained in R.

.
wne

A
s
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Preliminaries

Two propositions about partitions and refinements

Proposition

Let 7’ be obtained from 7 by a refining operation (R, S). If p is a stable
partition with ™ < p, then 7 < 7’ < p.

Proposition

Let G = (V, E) be a graph. For every partition 7 of V, there is a unique
coarsest stable partition p that refines 7.
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ALV Original algorithmic idea

Colours, colourings, colouring methods
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ALV Original algorithmic idea

Colours, colourings, colouring methods

Definition (Colouring)
A colouring of G is a: V(G) — Z. It is a k-colouring if
a(V(G)) €{1,...,k}. The colour class i is C{* = {v € V(G) | a(v) =i};

non-empty colour classes define a partition 7, of V(G).
<
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non-empty colour classes define a partition 7, of V(G).
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Definition (Colouring method)

A colouring method produces a colouring 3 from a k-colouring a.
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ALV Original algorithmic idea

Colours, colourings, colouring methods

Definition (Colouring)
A colouring of G is a: V(G) — Z. It is a k-colouring if
a(V(G)) €{1,...,k}. The colour class i is C{* = {v € V(G) | a(v) =i};

non-empty colour classes define a partition 7, of V(G).
v

Definition (Colouring method)

A colouring method produces a colouring 3 from a k-colouring a.

We are interested in colourings that are kept by isomorphisms.

Definition (Canonicity)

A canonical colouring method produces colourings 3, 3’ that are preserved
by a («, a’)-colour-preserving isomorphism between two isomorphic graphs
G, G’ with initial colouring «, o/, resp.
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Original algorithmic idea
The algorithm: input & output

Input
@ A n-vertices digraph G.
@ A surjective (initial) ¢-colouring o of V(G).
o A sufficient refining colour set S C {1,...,/¢}.
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Original algorithmic idea
The algorithm: input & output

Input
@ A n-vertices digraph G.
@ A surjective (initial) ¢-colouring o of V(G).
o A sufficient refining colour set S C {1,...,/¢}.

Sufficient refining colour set
(V) (vu,v € C) (B (INF(w) N CF| A INT(0) N O

=3 € S)(IN*(u) N Cl # IN*(0) N C3))

This is necessary to get actual refinements through the algorithm.

4
S. Boscaratto (UniUD) Colour Refinement Complexity 05/12/2025 10/ 27



Original algorithmic idea
The algorithm: input & output

Input
@ A n-vertices digraph G.
@ A surjective (initial) ¢-colouring o of V(G).
o A sufficient refining colour set S C {1,...,/¢}.

Sufficient refining colour set
(V) (vu,v € C) (B (INF(w) N CF| A INT(0) N O

=3 € S)(IN*(u) N Cl # IN*(0) N C3))

This is necessary to get actual refinements through the algorithm. )

Output )

— A surjective canonical k-colouring 3 s.t. mg is the coarsest stable
partition of V(G) refining m,.

4
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Original algorithmic idea
Pipeline

@ Take the partition Cf',...,C}.
@ Define Siefine := stack(S) (highest colour — top of stack).
© At each step, given (C1,...,Ck) until Syefine = 0
® Let 7 := pop(Siefine) (refining colour);
© Apply the refining operation (C,., V'): every colour class
Cs € {C1,...,Cy} is split according to its nodes’ colour degree
df(v) = |N*(v)NC,| w.r.t. colour r;
© New colours generated by splitting each C; will be s and
k+1,....,k+d—1 (d: number of different colour degrees in Cy);
O New colours are put onto Siefine unless C, has already been used as

not put onto Syenne (Hopcroft's trick).
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ALV Original algorithmic idea

Correctness

To prove the algorithm's correctness, the following are needed:
@ At the end of each iteration:
o (C1,...,Cy is an actual partition of V(G);
o Siefine is a sufficient refining colour set for the corresponding
k-colouring.
@ At the end of the algorithm:
o The resulting partition 73 is the coarsest stable partition of V(G)
refining mq;
e The partition 74 is canonical.
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ALV Original algorithmic idea

Correctness

To prove the algorithm's correctness, the following are needed:
@ At the end of each iteration:
o (C1,...,Cy is an actual partition of V(G); (trivial)
o Siefine is a sufficient refining colour set for the corresponding
k-colouring. (tedious)
@ At the end of the algorithm:

o The resulting partition 73 is the coarsest stable partition of V(G)
refining 7,; (trivial)
o The partition 7 is canonical. (by induction)
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Algorithm Fast implementation

How can we do better?

What is missing

The described algorithm has nested for-loops (bad time complexity) and no
description of the data structures used (but for the stack Siefine)-
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Algorithm Fast implementation

How can we do better?

What is missing

The described algorithm has nested for-loops (bad time complexity) and no
description of the data structures used (but for the stack Siefine)-

Improvements — data structures

e Colour classes. Doubly-linked lists C[i], with i € {1,...,n}.
o Colour degrees. Array cdeg[v], with v € {1,...,n}.

e Maximum colour degree for each colour: array maxcdeg.
o Colours having a vertex with cdeg[w] > 1: list Color,g;.
o Vertices with cdeg[w] > 1 and colour i: list A[s].

e Colour classes split. New list Colorgyi;, C Color,q; containing
actually split-up colours.
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Algorithm Fast implementation

Cost analysis

Lemma

The algorithm can be implemented in such a way that the refining
operation (R, S) takes time O(|R| + D~ (R) + klogk), where
D™ (R) =} ,cpd (v), k number of newly introduced colours;
initialisation step takes time O(n).

wne

S. Boscaratto (UniUD) Colour Refinement Complexity 05/12/2025

14 /27



Algorithm Fast implementation

Cost analysis

Lemma

The algorithm can be implemented in such a way that the refining
operation (R, S) takes time O(|R| + D~ (R) + klogk), where
D™ (R) =} ,cpd (v), k number of newly introduced colours;
initialisation step takes time O(n).

Lemma

The algorithm has an implementation with complexity O((m + n) logn).

Proof.
Z |R|+ D™ (R) +Zk¢ilogki = (n+m)logn + nlogn
R i

— T(n,m) € O(n)+0O((n+m)logn)+O(nlogn) = O((m+n)logn). 8
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Algorithm Fast implementation

Main result

Theorem

For any digraph G with n nodes, m edges and a surjective ¢-colouring «, a
canonical surjective k-colouring 3 such that 73 is the coarsest stable
partition refining 7, can be computed in time O((m + n)logn)
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Algorithm [EAVEGENIS

Variants
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different branch leads to worst-case non-polynomial time complexity.
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Variants

Queue vs. stack. O((m + n)logn) time complexity using either.

Iterative refinement. Individualisation of a single node gives
O((m + n)logn) time complexity; individualising each node on a
different branch leads to worst-case non-polynomial time complexity.

Undirected case. O((m + n)logn) time complexity.

Edge coloured digraph. O((m + n)log(m + n)) time complexity.
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Algorithm [EAVEGENIS

Variants

Queue vs. stack. O((m + n)logn) time complexity using either.

Iterative refinement. Individualisation of a single node gives
O((m + n)logn) time complexity; individualising each node on a
different branch leads to worst-case non-polynomial time complexity.

Undirected case. O((m + n)logn) time complexity.

Edge coloured digraph. O((m + n)log(m + n)) time complexity.

Bi-stable colouring of a digraph. O((m+n)logn) time complexity.
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Complexity lower bound Cost

Cost of operations and partition

To determine the complexity lower bound, we need to define the cost of
the operations used in the algorithm.
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Complexity lower bound Cost

Cost of operations and partition

To determine the complexity lower bound, we need to define the cost of
the operations used in the algorithm.

Definition (Cost of the operation (R, S))

cost(R,S) = |{(u,v) | u € R,v € S;uv € E(G)}|
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Complexity lower bound Cost

Cost of operations and partition

To determine the complexity lower bound, we need to define the cost of
the operations used in the algorithm.

Definition (Cost of the operation (R, S))

cost(R,S) = |{(u,v) | u € R,v € S;uv € E(G)}|

Definition (Cost of a partition)

{cost(w) =0

if 7 is stable
cost(m) := ming g cost(m(R, S)) + cost(R, S)

otherwise

where the minimum is taken over all effective refining operations (R, S)
that can be applied to 7.
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Complexity lower bound Cost

Cost of operations and partition

To determine the complexity lower bound, we need to define the cost of
the operations used in the algorithm.

Definition (Cost of the operation (R, S))

cost(R,S) = |{(u,v) | u € R,v € S;uv € E(G)}|

Definition (Cost of a partition)
cost(m) =0 if 7 is stable
cost(m) == ming g cost(m(R, S)) + cost(R,S) otherwise

where the minimum is taken over all effective refining operations (R, S)
that can be applied to 7.

Proposition (Monotonicity)
Let m and p be such that 7 < p < 7. Then cost(m) > cost(p).
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Complexity lower bound Cost

Cost of operations and partition

To determine the complexity lower bound, we need to define the cost of
the operations used in the algorithm.

Definition (Cost of the operation (R, S))

cost(R,S) = |{(u,v) | u € R,v € S;uv € E(G)}|

Definition (Cost of a partition)
cost(m) =0 if 7 is stable
cost(m) == ming g cost(m(R, S)) + cost(R,S) otherwise

where the minimum is taken over all effective elementary refining
operations (R, S) that can be applied to .

Proposition (Monotonicity)

Let m and p be such that m < p < 7. Then cost(m) > cost(p).
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Complexity lower bound Graph construction

is this the actual best we can do?

At this point we shall construct a graph representing the worst-case
scenario to prove the following.

Theorem

For every integer k > 2, there is a graph G with n € O(2Fk) vertices and
m € O(2Fk?) edges, such that cost(a) € Q((m + n)logn), where  is the
unit partition of V(Gyg).
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Complexity lower bound Graph construction

An ‘easy’ example
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Complexity lower bound Graph construction

Graph construction

For each k > 2, in G}, there are:
o Layers X,Y: sets with 2¥-many nodes each;
o Layers X, ): sets with 2k-many nodes each;
e Gadgets ANDy for ¢ € {1,...,k —1}:
e /l=1.V= {ao,al,bo,bl}, E= {aobo,albl};
o {=2:itis X3 from (Cai, Fiirer, Immermann, 1992);
e ¢ > 3: one copy of ANDy connected to two copies of AND,_;.

Its nodes are connected in such a way that the cost of each refining
operation is maximised.
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Complexity lower bound Graph construction

Purpose

Partition refinement of G}, behaves as follows.
1. X,Y are cells.
2. X splits into X}, X{ of equal size:
— X is split into X}, X} (binary blocks of level ¢ = 0),

— Y is split accordingly (expensive operation),
— Y splits into Y, Y7L

3. AND; causes X¢, X1 to split again: ...

F. Discrete colouring of X (and Y).
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Complexity lower bound Graph construction

Cost lower bound

At each step of the refining process, one has only two effective choices for
R, S, and either way the operation costs 26=(+1 12 This leads to a total

cost of 28713 = Q(mlogn) to partition each binary block of level ¢ + 1
into binary blocks of level ¢ + 2.
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Complexity lower bound Graph construction

Cost lower bound

At each step of the refining process, one has only two effective choices for
R, S, and either way the operation costs 26=(+1 12 This leads to a total

cost of 28713 = Q(mlogn) to partition each binary block of level ¢ + 1
into binary blocks of level ¢ + 2.

What's next?

o Consider partitions that are stable w.r.t. G}, = Gy — [X, )] and such
that X', ) are partitioned into binary blocks.

@ Show that they can be refined only using refining operations (R, S)
where R is a binary block of X and S is a binary block of V.
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Complexity lower bound Graph construction

Cost lower bound

At each step of the refining process, one has only two effective choices for
R, S, and either way the operation costs 26=(+1 12 This leads to a total

cost of 28713 = Q(mlogn) to partition each binary block of level ¢ + 1
into binary blocks of level ¢ + 2.
What's next?
o Consider partitions that are stable w.r.t. G}, = Gy — [X, )] and such
that X', ) are partitioned into binary blocks.

@ Show that they can be refined only using refining operations (R, S)
where R is a binary block of X and S is a binary block of V.

As n = [V(Gy)| € O(2Fk) and m = |E(G})| € O(2Fk?), we get

cost(a) € Q((m + n)logn).
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Complexity lower bound Other consequences

Bisimilarity

A directed coloured G represents a transition system.
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Complexity lower bound Other consequences

Bisimilarity

A directed coloured G represents a transition system.
Definition (Bisimilarity)
Coarsest bisimulation ~ on V, i.e. such that v ~ w implies

e \v) = ANw);

e forall v/ € NT(v) there exists a w' € Nt (w) s.t. v/ ~ w';

e for all w' € N (w) there exists a v/ € Nt (v) s.t. v/ ~ w/'.
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Complexity lower bound Other consequences
Bisimilarity

A directed coloured G represents a transition system.
Definition (Bisimilarity)
Coarsest bisimulation ~ on V, i.e. such that v ~ w implies

e \v) = ANw);

e forall v/ € NT(v) there exists a w' € Nt (w) s.t. v/ ~ w';

e for all w' € N (w) there exists a v/ € Nt (v) s.t. v/ ~ w/'.

Instead of refining a class by the degree towards another, we refine by the
Boolean value ‘degree at least 1.
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Complexity lower bound Other consequences
Bisimilarity

A directed coloured G represents a transition system.

Definition (Bisimilarity)

Coarsest bisimulation ~ on V, i.e. such that v ~ w implies
e \v) = ANw);

e forall v/ € NT(v) there exists a w' € Nt (w) s.t. v/ ~ w';

e for all w' € N (w) there exists a v/ € Nt (v) s.t. v/ ~ w/'.

Instead of refining a class by the degree towards another, we refine by the
Boolean value ‘degree at least 1.

Complexity lower bound

Lower bound for colour refinement implies a lower bound for bisimilarity.
i S
%ﬁw"?
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Two-variable first-order logic with counting

Theorem (Immermann, Ladner, 1990)

For all v,w in a graph G, v and w have the same colour in the coarsest
bi-stable colouring of G iff they are C2-equivalent.
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Two-variable first-order logic with counting

Theorem (Immermann, Ladner, 1990)

For all v,w in a graph G, v and w have the same colour in the coarsest
bi-stable colouring of G iff they are C2-equivalent.

Complexity lower bound

C2-equivalence classes can be computed in time no less than
O((m +n)logn).
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Complexity lower bound Other consequences

DFA minimisation

The graph Gy, turns into a highly non-deterministic transition system.

Hence the complexity lower bound do not apply to Deterministic Finite
state Automata DFAs.
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Complexity lower bound Other consequences

DFA minimisation

The graph Gy, turns into a highly non-deterministic transition system.
Hence the complexity lower bound do not apply to Deterministic Finite
state Automata DFAs.

Open problem

Is DFA-minimisation possible in linear time?

Known special case

(Paige, Tarjan, Bonic, 1985) showed that a DFA with a single-letter
function can be minimised in linear time.
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Further developments

Further developments

Stronger lower bounds

(Groote, Martens, de Vink, 2023) shows that a tighter lower bound of Q(n)
can be applied to bisimulation refinement by means of parallel algorithms.

Coalgebraic refinement

(Wissmann, Dorsch, Milius, Schréder, 2020) presents a coalgebraic
partition refinement algorithm, extending the complexity lower bound
O((m +n)logn) to e.g. Markov chains and Segala systems.
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