
Tight Lower and Upper Bounds for the Complexity of

Canonical Colour Re�nement

by C. Berkholz, P. Bonsma, M. Grohe

Simone Boscaratto

Supervisor: Alberto Policriti

University of Udine

5th December 2025

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 1 / 27

Introduction

Outline

1 Introduction
Aim
Idea

2 Preliminaries

3 Algorithm
Original algorithmic idea
Fast implementation
Variants

4 Complexity lower bound
Cost
Graph construction
Other consequences

5 Further developments

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 2 / 27

Introduction Aim

Aim

Goal

To de�ne a canonical colour re�nement procedure.

To optimise it as to get O((m+ n) log n) time complexity.

To show that no faster algorithm of this kind is possible.

Why does it matter?

Colour re�nement is able to distinguish almost all pairs of
non-isomorphic graphs (Babai, Erdös, Selkov, 1980).

The assumptions on the algorithms this bound applies are very humble
and shared by all the main tools for practical graph isomorphism,
e.g. nauty (McKay, 1981) and traces (McKay, Piperno, 2014).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 3 / 27

Introduction Aim

Aim

Goal

To de�ne a canonical colour re�nement procedure.

To optimise it as to get O((m+ n) log n) time complexity.

To show that no faster algorithm of this kind is possible.

Why does it matter?

Colour re�nement is able to distinguish almost all pairs of
non-isomorphic graphs (Babai, Erdös, Selkov, 1980).

The assumptions on the algorithms this bound applies are very humble
and shared by all the main tools for practical graph isomorphism,
e.g. nauty (McKay, 1981) and traces (McKay, Piperno, 2014).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 3 / 27

Introduction Aim

Aim

Goal

To de�ne a canonical colour re�nement procedure.

To optimise it as to get O((m+ n) log n) time complexity.

To show that no faster algorithm of this kind is possible.

Why does it matter?

Colour re�nement is able to distinguish almost all pairs of
non-isomorphic graphs (Babai, Erdös, Selkov, 1980).

The assumptions on the algorithms this bound applies are very humble
and shared by all the main tools for practical graph isomorphism,
e.g. nauty (McKay, 1981) and traces (McKay, Piperno, 2014).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 3 / 27

Introduction Aim

Aim

Goal

To de�ne a canonical colour re�nement procedure.

To optimise it as to get O((m+ n) log n) time complexity.

To show that no faster algorithm of this kind is possible.

Why does it matter?

Colour re�nement is able to distinguish almost all pairs of
non-isomorphic graphs (Babai, Erdös, Selkov, 1980).

The assumptions on the algorithms this bound applies are very humble
and shared by all the main tools for practical graph isomorphism,
e.g. nauty (McKay, 1981) and traces (McKay, Piperno, 2014).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 3 / 27

Introduction Aim

Aim

Goal

To de�ne a canonical colour re�nement procedure.

To optimise it as to get O((m+ n) log n) time complexity.

To show that no faster algorithm of this kind is possible.

Why does it matter?

Colour re�nement is able to distinguish almost all pairs of
non-isomorphic graphs (Babai, Erdös, Selkov, 1980).

The assumptions on the algorithms this bound applies are very humble
and shared by all the main tools for practical graph isomorphism,
e.g. nauty (McKay, 1981) and traces (McKay, Piperno, 2014).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 3 / 27

Introduction Idea

Core idea

Hopcroft's idea

This algorithm is based on idea of "process the smallest half"
(Hopcroft, 1970), originally thought to tackle automata minimisation.

(Cardon, Crochemore, 1982) and (Paige, Tarjan, 1987) already
implemented algorithms with same running time, but do not provide a
canonical stable partition.

Algorithm's core

1 Start with unit partition (all vertices have the same colour).

2 Smartly choose a re�ning set R and a union of partition cells S.

3 Use them to re�ne the previous partition until a stable colouring is
reached.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 4 / 27

Introduction Idea

Core idea

Hopcroft's idea

This algorithm is based on idea of "process the smallest half"
(Hopcroft, 1970), originally thought to tackle automata minimisation.

(Cardon, Crochemore, 1982) and (Paige, Tarjan, 1987) already
implemented algorithms with same running time, but do not provide a
canonical stable partition.

Algorithm's core

1 Start with unit partition (all vertices have the same colour).

2 Smartly choose a re�ning set R and a union of partition cells S.

3 Use them to re�ne the previous partition until a stable colouring is
reached.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 4 / 27

Introduction Idea

Core idea

Hopcroft's idea

This algorithm is based on idea of "process the smallest half"
(Hopcroft, 1970), originally thought to tackle automata minimisation.

(Cardon, Crochemore, 1982) and (Paige, Tarjan, 1987) already
implemented algorithms with same running time, but do not provide a
canonical stable partition.

Algorithm's core

1 Start with unit partition (all vertices have the same colour).

2 Smartly choose a re�ning set R and a union of partition cells S.

3 Use them to re�ne the previous partition until a stable colouring is
reached.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 4 / 27

Preliminaries

Partition

Given a simple graph G = (V,E) and v ∈ V , denote its neighbourhood and
degree by N(v) := {u ∈ V | (u, v) ∈ E} and d(v) := |N(v)|, respectively.

Directed case

One can adapt every de�nition to the directed case by considering
out-/in-neighbourhood N+(v)/N−(v) and out-/in-degree d+(v)/d−(v).

De�nition (Partition)

A partition π of V is a set of non-empty, pairwise-disjoint subsets of V
whose union is V . Each S ∈ π is called a cell of π.
The order of π is |π|: π is discrete if |π| = |V |, unit if |π| = 1.

Equivalence relation: u ≈π v
def⇐⇒(∃S ∈ π)(u, v ∈ S).

V ′ ⊆ V is π-closed if it is the union of cells of π.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 5 / 27

Preliminaries

Partition

Given a simple graph G = (V,E) and v ∈ V , denote its neighbourhood and
degree by N(v) := {u ∈ V | (u, v) ∈ E} and d(v) := |N(v)|, respectively.

Directed case

One can adapt every de�nition to the directed case by considering
out-/in-neighbourhood N+(v)/N−(v) and out-/in-degree d+(v)/d−(v).

De�nition (Partition)

A partition π of V is a set of non-empty, pairwise-disjoint subsets of V
whose union is V . Each S ∈ π is called a cell of π.
The order of π is |π|: π is discrete if |π| = |V |, unit if |π| = 1.

Equivalence relation: u ≈π v
def⇐⇒(∃S ∈ π)(u, v ∈ S).

V ′ ⊆ V is π-closed if it is the union of cells of π.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 5 / 27

Preliminaries

Partition

Given a simple graph G = (V,E) and v ∈ V , denote its neighbourhood and
degree by N(v) := {u ∈ V | (u, v) ∈ E} and d(v) := |N(v)|, respectively.

Directed case

One can adapt every de�nition to the directed case by considering
out-/in-neighbourhood N+(v)/N−(v) and out-/in-degree d+(v)/d−(v).

De�nition (Partition)

A partition π of V is a set of non-empty, pairwise-disjoint subsets of V
whose union is V . Each S ∈ π is called a cell of π.
The order of π is |π|: π is discrete if |π| = |V |, unit if |π| = 1.

Equivalence relation: u ≈π v
def⇐⇒(∃S ∈ π)(u, v ∈ S).

V ′ ⊆ V is π-closed if it is the union of cells of π.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 5 / 27

Preliminaries

Partition

Given a simple graph G = (V,E) and v ∈ V , denote its neighbourhood and
degree by N(v) := {u ∈ V | (u, v) ∈ E} and d(v) := |N(v)|, respectively.

Directed case

One can adapt every de�nition to the directed case by considering
out-/in-neighbourhood N+(v)/N−(v) and out-/in-degree d+(v)/d−(v).

De�nition (Partition)

A partition π of V is a set of non-empty, pairwise-disjoint subsets of V
whose union is V . Each S ∈ π is called a cell of π.
The order of π is |π|: π is discrete if |π| = |V |, unit if |π| = 1.

Equivalence relation: u ≈π v
def⇐⇒(∃S ∈ π)(u, v ∈ S).

V ′ ⊆ V is π-closed if it is the union of cells of π.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 5 / 27

Preliminaries

Stability and re�nement

De�nition (Stability)

A partition π of V is stable for the undirected simple graph G i�

(∀u, v ∈ V)(∀R ∈ π)
(
u ≈π v ⇒ |N(u) ∩R| = |N(v) ∩R|

)
.

De�nition (Re�nement)

A partition ρ of V re�nes a partition π if (∀u, v ∈ V)(u ≈ρ v ⇒ u ≈π v):
in this case, π ⪯ ρ (π is coarser than ρ; ρ is �ner than π).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 6 / 27

Preliminaries

Stability and re�nement

De�nition (Stability)

A partition π of V is stable for the directed simple graph G i�

(∀u, v ∈ V)(∀R ∈ π)
(
u ≈π v ⇒ |N+(u) ∩R| = |N+(v) ∩R|

)
.

De�nition (Re�nement)

A partition ρ of V re�nes a partition π if (∀u, v ∈ V)(u ≈ρ v ⇒ u ≈π v):
in this case, π ⪯ ρ (π is coarser than ρ; ρ is �ner than π).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 6 / 27

Preliminaries

Stability and re�nement

De�nition (Stability)

A partition π of V is stable for the directed simple graph G i�

(∀u, v ∈ V)(∀R ∈ π)
(
u ≈π v ⇒ |N+(u) ∩R| = |N+(v) ∩R|

)
.

De�nition (Re�nement)

A partition ρ of V re�nes a partition π if (∀u, v ∈ V)(u ≈ρ v ⇒ u ≈π v):
in this case, π ⪯ ρ (π is coarser than ρ; ρ is �ner than π).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 6 / 27

Preliminaries

Re�ning operation (R, S)

De�nition (Re�ning operation (R,S))

Given π, π′ partitions of V , R,S ⊆ V π-closed, π′ is obtained from π by a
re�ning operation (R,S) if

(∀S′ ∈ π)(S′ ∩ S = ∅ ⇒ S′ ∈ π′), and

(∀u, v ∈ S)
(
u ≈π′ v ⇔ u ≈π v ∧ (∀R′ ∈ π)(R′ ⊆ R ⇒

|N+(u) ∩R′| = |N+(v) ∩R′|)
)
.

Meaning

Every π-cell not included in S is not touched by the operation,
i.e. just the π-cells of S are re�ned.

The π′-cells that are not also π-cells are given by the nodes that have
the same number of neighbours in each π-cell contained in R.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 7 / 27

Preliminaries

Two propositions about partitions and re�nements

Proposition

Let π′ be obtained from π by a re�ning operation (R,S). If ρ is a stable
partition with π ⪯ ρ, then π ⪯ π′ ⪯ ρ.

Proposition

Let G = (V,E) be a graph. For every partition π of V , there is a unique
coarsest stable partition ρ that re�nes π.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 8 / 27

Algorithm Original algorithmic idea

Colours, colourings, colouring methods

De�nition (Colouring)

A colouring of G is α : V (G) → Z. It is a k-colouring if
α(V (G)) ⊆ {1, . . . , k}. The colour class i is Cα

i = {v ∈ V (G) | α(v) = i};
non-empty colour classes de�ne a partition πα of V (G).

De�nition (Colouring method)

A colouring method produces a colouring β from a k-colouring α.

We are interested in colourings that are kept by isomorphisms.

De�nition (Canonicity)

A canonical colouring method produces colourings β, β′ that are preserved
by a (α, α′)-colour-preserving isomorphism between two isomorphic graphs
G,G′ with initial colouring α, α′, resp.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 9 / 27

Algorithm Original algorithmic idea

Colours, colourings, colouring methods

De�nition (Colouring)

A colouring of G is α : V (G) → Z. It is a k-colouring if
α(V (G)) ⊆ {1, . . . , k}. The colour class i is Cα

i = {v ∈ V (G) | α(v) = i};
non-empty colour classes de�ne a partition πα of V (G).

De�nition (Colouring method)

A colouring method produces a colouring β from a k-colouring α.

We are interested in colourings that are kept by isomorphisms.

De�nition (Canonicity)

A canonical colouring method produces colourings β, β′ that are preserved
by a (α, α′)-colour-preserving isomorphism between two isomorphic graphs
G,G′ with initial colouring α, α′, resp.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 9 / 27

Algorithm Original algorithmic idea

Colours, colourings, colouring methods

De�nition (Colouring)

A colouring of G is α : V (G) → Z. It is a k-colouring if
α(V (G)) ⊆ {1, . . . , k}. The colour class i is Cα

i = {v ∈ V (G) | α(v) = i};
non-empty colour classes de�ne a partition πα of V (G).

De�nition (Colouring method)

A colouring method produces a colouring β from a k-colouring α.

We are interested in colourings that are kept by isomorphisms.

De�nition (Canonicity)

A canonical colouring method produces colourings β, β′ that are preserved
by a (α, α′)-colour-preserving isomorphism between two isomorphic graphs
G,G′ with initial colouring α, α′, resp.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 9 / 27

Algorithm Original algorithmic idea

Colours, colourings, colouring methods

De�nition (Colouring)

A colouring of G is α : V (G) → Z. It is a k-colouring if
α(V (G)) ⊆ {1, . . . , k}. The colour class i is Cα

i = {v ∈ V (G) | α(v) = i};
non-empty colour classes de�ne a partition πα of V (G).

De�nition (Colouring method)

A colouring method produces a colouring β from a k-colouring α.

We are interested in colourings that are kept by isomorphisms.

De�nition (Canonicity)

A canonical colouring method produces colourings β, β′ that are preserved
by a (α, α′)-colour-preserving isomorphism between two isomorphic graphs
G,G′ with initial colouring α, α′, resp.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 9 / 27

Algorithm Original algorithmic idea

The algorithm: input & output

Input

A n-vertices digraph G.

A surjective (initial) ℓ-colouring α of V (G).

A su�cient re�ning colour set S ⊆ {1, . . . , ℓ}.

Su�cient re�ning colour set

(∀Cα
i)(∀u, v ∈ Cα

i)
(
(∃Cα

j)(|N+(u) ∩ Cα
j | ≠ |N+(v) ∩ Cα

j |)

⇒(∃j′ ∈ S)(|N+(u) ∩ Cα
j′ | ≠ |N+(v) ∩ Cα

j′ |)
)

This is necessary to get actual re�nements through the algorithm.

Output

→ A surjective canonical k-colouring β s.t. πβ is the coarsest stable
partition of V (G) re�ning πα.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 10 / 27

Algorithm Original algorithmic idea

The algorithm: input & output

Input

A n-vertices digraph G.

A surjective (initial) ℓ-colouring α of V (G).

A su�cient re�ning colour set S ⊆ {1, . . . , ℓ}.

Su�cient re�ning colour set

(∀Cα
i)(∀u, v ∈ Cα

i)
(
(∃Cα

j)(|N+(u) ∩ Cα
j | ≠ |N+(v) ∩ Cα

j |)

⇒(∃j′ ∈ S)(|N+(u) ∩ Cα
j′ | ≠ |N+(v) ∩ Cα

j′ |)
)

This is necessary to get actual re�nements through the algorithm.

Output

→ A surjective canonical k-colouring β s.t. πβ is the coarsest stable
partition of V (G) re�ning πα.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 10 / 27

Algorithm Original algorithmic idea

The algorithm: input & output

Input

A n-vertices digraph G.

A surjective (initial) ℓ-colouring α of V (G).

A su�cient re�ning colour set S ⊆ {1, . . . , ℓ}.

Su�cient re�ning colour set

(∀Cα
i)(∀u, v ∈ Cα

i)
(
(∃Cα

j)(|N+(u) ∩ Cα
j | ≠ |N+(v) ∩ Cα

j |)

⇒(∃j′ ∈ S)(|N+(u) ∩ Cα
j′ | ≠ |N+(v) ∩ Cα

j′ |)
)

This is necessary to get actual re�nements through the algorithm.

Output

→ A surjective canonical k-colouring β s.t. πβ is the coarsest stable
partition of V (G) re�ning πα.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 10 / 27

Algorithm Original algorithmic idea

Pipeline

1 Take the partition Cα
1 , . . . , C

α
ℓ .

2 De�ne Srefine := stack(S) (highest colour → top of stack).
3 At each step, given (C1, . . . , Ck) until Srefine = ∅:

1 Let r := pop(Srefine) (re�ning colour);
2 Apply the re�ning operation (Cr, V): every colour class

Cs ∈ {C1, . . . , Ck} is split according to its nodes' colour degree

d+r (v) := |N+(v) ∩ Cr| w.r.t. colour r;
3 New colours generated by splitting each Cs will be s and

k + 1, . . . , k + d− 1 (d: number of di�erent colour degrees in Cs);
4 New colours are put onto Srefine unless Cs has already been used as

re�ning set: in this case, a colour b which class Cb has maximum size is
not put onto Srefine (Hopcroft's trick).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 11 / 27

Algorithm Original algorithmic idea

Correctness

To prove the algorithm's correctness, the following are needed:

At the end of each iteration:

C1, . . . , Ck is an actual partition of V (G); (trivial)
Srefine is a su�cient re�ning colour set for the corresponding
k-colouring. (tedious)

At the end of the algorithm:

The resulting partition πβ is the coarsest stable partition of V (G)
re�ning πα; (trivial)
The partition πβ is canonical. (by induction)

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 12 / 27

Algorithm Original algorithmic idea

Correctness

To prove the algorithm's correctness, the following are needed:

At the end of each iteration:

C1, . . . , Ck is an actual partition of V (G); (trivial)
Srefine is a su�cient re�ning colour set for the corresponding
k-colouring. (tedious)

At the end of the algorithm:

The resulting partition πβ is the coarsest stable partition of V (G)
re�ning πα; (trivial)
The partition πβ is canonical. (by induction)

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 12 / 27

Algorithm Original algorithmic idea

Correctness

To prove the algorithm's correctness, the following are needed:

At the end of each iteration:

C1, . . . , Ck is an actual partition of V (G); (trivial)
Srefine is a su�cient re�ning colour set for the corresponding
k-colouring. (tedious)

At the end of the algorithm:

The resulting partition πβ is the coarsest stable partition of V (G)
re�ning πα; (trivial)
The partition πβ is canonical. (by induction)

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 12 / 27

Algorithm Original algorithmic idea

Correctness

To prove the algorithm's correctness, the following are needed:

At the end of each iteration:

C1, . . . , Ck is an actual partition of V (G); (trivial)
Srefine is a su�cient re�ning colour set for the corresponding
k-colouring. (tedious)

At the end of the algorithm:

The resulting partition πβ is the coarsest stable partition of V (G)
re�ning πα; (trivial)
The partition πβ is canonical. (by induction)

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 12 / 27

Algorithm Original algorithmic idea

Correctness

To prove the algorithm's correctness, the following are needed:

At the end of each iteration:

C1, . . . , Ck is an actual partition of V (G); (trivial)
Srefine is a su�cient re�ning colour set for the corresponding
k-colouring. (tedious)

At the end of the algorithm:

The resulting partition πβ is the coarsest stable partition of V (G)
re�ning πα; (trivial)
The partition πβ is canonical. (by induction)

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 12 / 27

Algorithm Fast implementation

How can we do better?

What is missing

The described algorithm has nested for-loops (bad time complexity) and no
description of the data structures used (but for the stack Srefine).

Improvements � data structures

Colour classes. Doubly-linked lists C[i], with i ∈ {1, . . . , n}.
Colour degrees. Array cdeg[v], with v ∈ {1, . . . , n}.

Maximum colour degree for each colour: array maxcdeg.
Colours having a vertex with cdeg[w] ≥ 1: list Coloradj.
Vertices with cdeg[w] ≥ 1 and colour i: list A[i].

Colour classes split. New list Colorsplit ⊆ Coloradj containing
actually split-up colours.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 13 / 27

Algorithm Fast implementation

How can we do better?

What is missing

The described algorithm has nested for-loops (bad time complexity) and no
description of the data structures used (but for the stack Srefine).

Improvements � data structures

Colour classes. Doubly-linked lists C[i], with i ∈ {1, . . . , n}.
Colour degrees. Array cdeg[v], with v ∈ {1, . . . , n}.

Maximum colour degree for each colour: array maxcdeg.
Colours having a vertex with cdeg[w] ≥ 1: list Coloradj.
Vertices with cdeg[w] ≥ 1 and colour i: list A[i].

Colour classes split. New list Colorsplit ⊆ Coloradj containing
actually split-up colours.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 13 / 27

Algorithm Fast implementation

Cost analysis

Lemma

The algorithm can be implemented in such a way that the re�ning
operation (R,S) takes time O(|R|+D−(R) + k log k), where
D−(R) =

∑
v∈R d−(v), k number of newly introduced colours;

initialisation step takes time O(n).

Lemma

The algorithm has an implementation with complexity O((m+ n) log n).

Proof.∑
R

|R|+D−(R) +
∑
i

ki log ki = (n+m) log n+ n log n

→ T (n,m) ∈ O(n)+O((n+m) log n)+O(n log n) = O((m+n) log n).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 14 / 27

Algorithm Fast implementation

Cost analysis

Lemma

The algorithm can be implemented in such a way that the re�ning
operation (R,S) takes time O(|R|+D−(R) + k log k), where
D−(R) =

∑
v∈R d−(v), k number of newly introduced colours;

initialisation step takes time O(n).

Lemma

The algorithm has an implementation with complexity O((m+ n) log n).

Proof.∑
R

|R|+D−(R) +
∑
i

ki log ki = (n+m) log n+ n log n

→ T (n,m) ∈ O(n)+O((n+m) log n)+O(n log n) = O((m+n) log n).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 14 / 27

Algorithm Fast implementation

Main result

Theorem

For any digraph G with n nodes, m edges and a surjective ℓ-colouring α, a
canonical surjective k-colouring β such that πβ is the coarsest stable
partition re�ning πα can be computed in time O((m+ n) log n)

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 15 / 27

Algorithm Variants

Variants

Queue vs. stack. O((m+ n) log n) time complexity using either.

Iterative re�nement. Individualisation of a single node gives
O((m+ n) log n) time complexity; individualising each node on a
di�erent branch leads to worst-case non-polynomial time complexity.

Undirected case. O((m+ n) log n) time complexity.

Edge coloured digraph. O((m+ n) log(m+ n)) time complexity.

Bi-stable colouring of a digraph. O((m+n) log n) time complexity.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 16 / 27

Algorithm Variants

Variants

Queue vs. stack. O((m+ n) log n) time complexity using either.

Iterative re�nement. Individualisation of a single node gives
O((m+ n) log n) time complexity; individualising each node on a
di�erent branch leads to worst-case non-polynomial time complexity.

Undirected case. O((m+ n) log n) time complexity.

Edge coloured digraph. O((m+ n) log(m+ n)) time complexity.

Bi-stable colouring of a digraph. O((m+n) log n) time complexity.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 16 / 27

Algorithm Variants

Variants

Queue vs. stack. O((m+ n) log n) time complexity using either.

Iterative re�nement. Individualisation of a single node gives
O((m+ n) log n) time complexity; individualising each node on a
di�erent branch leads to worst-case non-polynomial time complexity.

Undirected case. O((m+ n) log n) time complexity.

Edge coloured digraph. O((m+ n) log(m+ n)) time complexity.

Bi-stable colouring of a digraph. O((m+n) log n) time complexity.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 16 / 27

Algorithm Variants

Variants

Queue vs. stack. O((m+ n) log n) time complexity using either.

Iterative re�nement. Individualisation of a single node gives
O((m+ n) log n) time complexity; individualising each node on a
di�erent branch leads to worst-case non-polynomial time complexity.

Undirected case. O((m+ n) log n) time complexity.

Edge coloured digraph. O((m+ n) log(m+ n)) time complexity.

Bi-stable colouring of a digraph. O((m+n) log n) time complexity.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 16 / 27

Algorithm Variants

Variants

Queue vs. stack. O((m+ n) log n) time complexity using either.

Iterative re�nement. Individualisation of a single node gives
O((m+ n) log n) time complexity; individualising each node on a
di�erent branch leads to worst-case non-polynomial time complexity.

Undirected case. O((m+ n) log n) time complexity.

Edge coloured digraph. O((m+ n) log(m+ n)) time complexity.

Bi-stable colouring of a digraph. O((m+n) log n) time complexity.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 16 / 27

Algorithm Variants

Variants

Queue vs. stack. O((m+ n) log n) time complexity using either.

Iterative re�nement. Individualisation of a single node gives
O((m+ n) log n) time complexity; individualising each node on a
di�erent branch leads to worst-case non-polynomial time complexity.

Undirected case. O((m+ n) log n) time complexity.

Edge coloured digraph. O((m+ n) log(m+ n)) time complexity.

Bi-stable colouring of a digraph. O((m+n) log n) time complexity.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 16 / 27

Complexity lower bound Cost

Cost of operations and partition

To determine the complexity lower bound, we need to de�ne the cost of
the operations used in the algorithm.

De�nition (Cost of the operation (R,S))

cost(R,S) := |{(u, v) | u ∈ R, v ∈ S, uv ∈ E(G)}|

De�nition (Cost of a partition){
cost(π) := 0 if π is stable

cost(π) := minR,S cost(π(R,S)) + cost(R,S) otherwise

where the minimum is taken over all e�ective re�ning operations (R,S)
that can be applied to π.

Proposition (Monotonicity)

Let π and ρ be such that π ⪯ ρ ⪯ π∞. Then cost(π) ≥ cost(ρ).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 17 / 27

Complexity lower bound Cost

Cost of operations and partition

To determine the complexity lower bound, we need to de�ne the cost of
the operations used in the algorithm.

De�nition (Cost of the operation (R,S))

cost(R,S) := |{(u, v) | u ∈ R, v ∈ S, uv ∈ E(G)}|

De�nition (Cost of a partition){
cost(π) := 0 if π is stable

cost(π) := minR,S cost(π(R,S)) + cost(R,S) otherwise

where the minimum is taken over all e�ective re�ning operations (R,S)
that can be applied to π.

Proposition (Monotonicity)

Let π and ρ be such that π ⪯ ρ ⪯ π∞. Then cost(π) ≥ cost(ρ).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 17 / 27

Complexity lower bound Cost

Cost of operations and partition

To determine the complexity lower bound, we need to de�ne the cost of
the operations used in the algorithm.

De�nition (Cost of the operation (R,S))

cost(R,S) := |{(u, v) | u ∈ R, v ∈ S, uv ∈ E(G)}|

De�nition (Cost of a partition){
cost(π) := 0 if π is stable

cost(π) := minR,S cost(π(R,S)) + cost(R,S) otherwise

where the minimum is taken over all e�ective re�ning operations (R,S)
that can be applied to π.

Proposition (Monotonicity)

Let π and ρ be such that π ⪯ ρ ⪯ π∞. Then cost(π) ≥ cost(ρ).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 17 / 27

Complexity lower bound Cost

Cost of operations and partition

To determine the complexity lower bound, we need to de�ne the cost of
the operations used in the algorithm.

De�nition (Cost of the operation (R,S))

cost(R,S) := |{(u, v) | u ∈ R, v ∈ S, uv ∈ E(G)}|

De�nition (Cost of a partition){
cost(π) := 0 if π is stable

cost(π) := minR,S cost(π(R,S)) + cost(R,S) otherwise

where the minimum is taken over all e�ective re�ning operations (R,S)
that can be applied to π.

Proposition (Monotonicity)

Let π and ρ be such that π ⪯ ρ ⪯ π∞. Then cost(π) ≥ cost(ρ).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 17 / 27

Complexity lower bound Cost

Cost of operations and partition

To determine the complexity lower bound, we need to de�ne the cost of
the operations used in the algorithm.

De�nition (Cost of the operation (R,S))

cost(R,S) := |{(u, v) | u ∈ R, v ∈ S, uv ∈ E(G)}|

De�nition (Cost of a partition){
cost(π) := 0 if π is stable

cost(π) := minR,S cost(π(R,S)) + cost(R,S) otherwise

where the minimum is taken over all e�ective elementary re�ning
operations (R,S) that can be applied to π.

Proposition (Monotonicity)

Let π and ρ be such that π ⪯ ρ ⪯ π∞. Then cost(π) ≥ cost(ρ).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 17 / 27

Complexity lower bound Graph construction

... is this the actual best we can do?

At this point we shall construct a graph representing the worst-case
scenario to prove the following.

Theorem

For every integer k ≥ 2, there is a graph Gk with n ∈ O(2kk) vertices and
m ∈ O(2kk2) edges, such that cost(α) ∈ Ω((m+ n) log n), where α is the
unit partition of V (Gk).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 18 / 27

Complexity lower bound Graph construction

An `easy' example

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 19 / 27

Complexity lower bound Graph construction

Graph construction

For each k ≥ 2, in Gk there are:

Layers X,Y : sets with 2k-many nodes each;

Layers X ,Y: sets with 2kk-many nodes each;

Gadgets ANDℓ for ℓ ∈ {1, . . . , k − 1}:
ℓ = 1: V = {a0, a1, b0, b1}, E = {a0b0, a1b1};
ℓ = 2: it is X3 from (Cai, Fürer, Immermann, 1992);
ℓ ≥ 3: one copy of AND2 connected to two copies of ANDℓ−1.

Its nodes are connected in such a way that the cost of each re�ning
operation is maximised.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 20 / 27

Complexity lower bound Graph construction

Purpose

Partition re�nement of Gk behaves as follows.

1. X,Y are cells.

2. X splits into X1
0 , X

1
1 of equal size:

→ X is split into X 1
0 ,X 1

1 (binary blocks of level ℓ = 0),
→ Y is split accordingly (expensive operation),
→ Y splits into Y 1

0 , Y
1
1 .

3. AND1 causes X1
0 , X

1
1 to split again: ...

...

F. Discrete colouring of X (and Y).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 21 / 27

Complexity lower bound Graph construction

Cost lower bound

At each step of the re�ning process, one has only two e�ective choices for
R,S, and either way the operation costs 2k−(ℓ+1)k2. This leads to a total
cost of 2k−1k3 = Ω(m log n) to partition each binary block of level ℓ+ 1
into binary blocks of level ℓ+ 2.

What's next?

Consider partitions that are stable w.r.t. G′
k = Gk − [X ,Y] and such

that X ,Y are partitioned into binary blocks.

Show that they can be re�ned only using re�ning operations (R,S)
where R is a binary block of X and S is a binary block of Y.

As n = |V (Gk)| ∈ O(2kk) and m = |E(Gk)| ∈ O(2kk2), we get

cost(α) ∈ Ω((m+ n) log n).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 22 / 27

Complexity lower bound Graph construction

Cost lower bound

At each step of the re�ning process, one has only two e�ective choices for
R,S, and either way the operation costs 2k−(ℓ+1)k2. This leads to a total
cost of 2k−1k3 = Ω(m log n) to partition each binary block of level ℓ+ 1
into binary blocks of level ℓ+ 2.

What's next?

Consider partitions that are stable w.r.t. G′
k = Gk − [X ,Y] and such

that X ,Y are partitioned into binary blocks.

Show that they can be re�ned only using re�ning operations (R,S)
where R is a binary block of X and S is a binary block of Y.

As n = |V (Gk)| ∈ O(2kk) and m = |E(Gk)| ∈ O(2kk2), we get

cost(α) ∈ Ω((m+ n) log n).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 22 / 27

Complexity lower bound Graph construction

Cost lower bound

At each step of the re�ning process, one has only two e�ective choices for
R,S, and either way the operation costs 2k−(ℓ+1)k2. This leads to a total
cost of 2k−1k3 = Ω(m log n) to partition each binary block of level ℓ+ 1
into binary blocks of level ℓ+ 2.

What's next?

Consider partitions that are stable w.r.t. G′
k = Gk − [X ,Y] and such

that X ,Y are partitioned into binary blocks.

Show that they can be re�ned only using re�ning operations (R,S)
where R is a binary block of X and S is a binary block of Y.

As n = |V (Gk)| ∈ O(2kk) and m = |E(Gk)| ∈ O(2kk2), we get

cost(α) ∈ Ω((m+ n) log n).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 22 / 27

Complexity lower bound Other consequences

Bisimilarity

A directed coloured G represents a transition system.

De�nition (Bisimilarity)

Coarsest bisimulation ∼ on V , i.e. such that v ∼ w implies

λ(v) = λ(w);

for all v′ ∈ N+(v) there exists a w′ ∈ N+(w) s.t. v′ ∼ w′;

for all w′ ∈ N+(w) there exists a v′ ∈ N+(v) s.t. v′ ∼ w′.

Instead of re�ning a class by the degree towards another, we re�ne by the
Boolean value `degree at least 1'.

Complexity lower bound

Lower bound for colour re�nement implies a lower bound for bisimilarity.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 23 / 27

Complexity lower bound Other consequences

Bisimilarity

A directed coloured G represents a transition system.

De�nition (Bisimilarity)

Coarsest bisimulation ∼ on V , i.e. such that v ∼ w implies

λ(v) = λ(w);

for all v′ ∈ N+(v) there exists a w′ ∈ N+(w) s.t. v′ ∼ w′;

for all w′ ∈ N+(w) there exists a v′ ∈ N+(v) s.t. v′ ∼ w′.

Instead of re�ning a class by the degree towards another, we re�ne by the
Boolean value `degree at least 1'.

Complexity lower bound

Lower bound for colour re�nement implies a lower bound for bisimilarity.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 23 / 27

Complexity lower bound Other consequences

Bisimilarity

A directed coloured G represents a transition system.

De�nition (Bisimilarity)

Coarsest bisimulation ∼ on V , i.e. such that v ∼ w implies

λ(v) = λ(w);

for all v′ ∈ N+(v) there exists a w′ ∈ N+(w) s.t. v′ ∼ w′;

for all w′ ∈ N+(w) there exists a v′ ∈ N+(v) s.t. v′ ∼ w′.

Instead of re�ning a class by the degree towards another, we re�ne by the
Boolean value `degree at least 1'.

Complexity lower bound

Lower bound for colour re�nement implies a lower bound for bisimilarity.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 23 / 27

Complexity lower bound Other consequences

Bisimilarity

A directed coloured G represents a transition system.

De�nition (Bisimilarity)

Coarsest bisimulation ∼ on V , i.e. such that v ∼ w implies

λ(v) = λ(w);

for all v′ ∈ N+(v) there exists a w′ ∈ N+(w) s.t. v′ ∼ w′;

for all w′ ∈ N+(w) there exists a v′ ∈ N+(v) s.t. v′ ∼ w′.

Instead of re�ning a class by the degree towards another, we re�ne by the
Boolean value `degree at least 1'.

Complexity lower bound

Lower bound for colour re�nement implies a lower bound for bisimilarity.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 23 / 27

Complexity lower bound Other consequences

Two-variable �rst-order logic with counting

Theorem (Immermann, Ladner, 1990)

For all v, w in a graph G, v and w have the same colour in the coarsest
bi-stable colouring of G i� they are C2-equivalent.

Complexity lower bound

C2-equivalence classes can be computed in time no less than
O((m+ n) log n).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 24 / 27

Complexity lower bound Other consequences

Two-variable �rst-order logic with counting

Theorem (Immermann, Ladner, 1990)

For all v, w in a graph G, v and w have the same colour in the coarsest
bi-stable colouring of G i� they are C2-equivalent.

Complexity lower bound

C2-equivalence classes can be computed in time no less than
O((m+ n) log n).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 24 / 27

Complexity lower bound Other consequences

Two-variable �rst-order logic with counting

Theorem (Immermann, Ladner, 1990)

For all v, w in a graph G, v and w have the same colour in the coarsest
bi-stable colouring of G i� they are C2-equivalent.

Complexity lower bound

C2-equivalence classes can be computed in time no less than
O((m+ n) log n).

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 24 / 27

Complexity lower bound Other consequences

DFA minimisation

The graph Gk turns into a highly non-deterministic transition system.
Hence the complexity lower bound do not apply to Deterministic Finite

state Automata DFAs.

Open problem

Is DFA-minimisation possible in linear time?

Known special case

(Paige, Tarjan, Bonic, 1985) showed that a DFA with a single-letter
function can be minimised in linear time.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 25 / 27

Complexity lower bound Other consequences

DFA minimisation

The graph Gk turns into a highly non-deterministic transition system.
Hence the complexity lower bound do not apply to Deterministic Finite

state Automata DFAs.

Open problem

Is DFA-minimisation possible in linear time?

Known special case

(Paige, Tarjan, Bonic, 1985) showed that a DFA with a single-letter
function can be minimised in linear time.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 25 / 27

Complexity lower bound Other consequences

DFA minimisation

The graph Gk turns into a highly non-deterministic transition system.
Hence the complexity lower bound do not apply to Deterministic Finite

state Automata DFAs.

Open problem

Is DFA-minimisation possible in linear time?

Known special case

(Paige, Tarjan, Bonic, 1985) showed that a DFA with a single-letter
function can be minimised in linear time.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 25 / 27

Further developments

Further developments

Stronger lower bounds

(Groote, Martens, de Vink, 2023) shows that a tighter lower bound of Ω(n)
can be applied to bisimulation re�nement by means of parallel algorithms.

Coalgebraic re�nement

(Wissmann, Dorsch, Milius, Schröder, 2020) presents a coalgebraic
partition re�nement algorithm, extending the complexity lower bound
O((m+ n) log n) to e.g. Markov chains and Segala systems.

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 26 / 27

Bibliography

Bibliography

Berkholz, Bonsma, Grohe. Tight Lower and Upper Bound for the

Complexity of Canonical Colour Re�nement. (2017)

Babai, Erdös, Selkov. Random Graph Isomorphism. (1980)

Cai, Fürer, Immerman. An optimal lower bound on the number of

variables for graph identi�cations. (1992)

Cardon, Crochemore. Partitioning a graph in O(|A| log2 |V |). (1982)
McKay. Practical Graph Isomorphism. (1981)

McKay, Piperno. Practical Graph Isomorphism II. (2014)

Immerman, Lander. Describing Graphs: a First-Order Approach to

Graph Canonization. (1990)

Paige, Tarjan. Three partition re�nement algorithms. (1987)

Paige, Tarjan, Bonic. A linear time solution to the single function

coarsest partition problem. (1985)

S. Boscaratto (UniUD) Colour Re�nement Complexity 05/12/2025 27 / 27

	Introduction
	Aim
	Idea

	Preliminaries
	Algorithm
	Original algorithmic idea
	Fast implementation
	Variants

	Complexity lower bound
	Cost
	Graph construction
	Other consequences

	Further developments
	Bibliography

