
FIRST-ORDER AUTOMATA

Nicola Gigante
Free University of Bozen-Bolzano, Italy

iFM2

April 19, 2024
Udine, Italy

2

Infinite-state specification and verification

Model-checking and other verification techniques for finite-state systems have been extremely
successful in the past decades.

However, many real-world scenarios require reasoning over infinite-state systems.

3

Infinite-state specification and verification

There are many infinite-state formalisms around.
timed automata [AD94]
hybrid automata [Alu+92]
recursive state machines [Alu+05; BMP10]
visibly pushdown languages [AM04]
operator-precedence languages [Dro+17]
FIFO machines [BZ83]
counter machines [Woj99]
Petri nets [Mur89; JK09]
data-aware systems [DLV19; CGM13; Ghi+23]
automata over infinite alphabets [Seg06; IX19]
register automata [KF94]

4

Infinite-state specification and verification

And many logics to talk about them.
precedence oriented temporal logic [CMP22]
metric temporal logics [Koy90; LVR22; AH94]
temporal logics with concrete domains [DQ21]
temporal logics with arithmetics [Fel+23; Cim+20]
separation logic [CYO01; BK18; Man20]
constrained horn clauses [GB19]
logics on data words [Boj+06; DLN07]
signal temporal logic [MN04]
first-order temporal logics [Kon+04]

4

Infinite-state specification and verification

And many logics to talk about them.
precedence oriented temporal logic [CMP22]
metric temporal logics [Koy90; LVR22; AH94]
temporal logics with concrete domains [DQ21]
temporal logics with arithmetics [Fel+23; Cim+20]
separation logic [CYO01; BK18; Man20]
constrained horn clauses [GB19]
logics on data words [Boj+06; DLN07]
signal temporal logic [MN04]
first-order temporal logics [Kon+04]

5

First-order Temporal Logic

First-order temporal logics are expressive formalisms to specify properties of infinite-state systems:

badly undecidable, however;
used mostly in really tailored fragments or in knowledge representation applications
where reasoning is not the main task;

Question

Can we make them practical, as a specification language for verification tasks,
while maintaining a substantial fraction of its expressive power?

6

First-order automata

In the finite-state setting, automata have played the crucial role of the algorithmic powerhorse
of verification and model checking.

Question

Can we define a similar tool for first-order temporal logic?

7

Table of contents

High-level overview of the talk:
recap on propositional and first-order temporal logics
past results: LTL modulo theories
current directions: first-order automata
conclusions

8

FIRST-ORDER TEMPORAL LOGICS

9

Linear Temporal Logic

Let us recap the main concepts of Linear Temporal Logic:
modal logic interpreted over discrete linear orders
traditionally, infinite linear orders
recently, finite models gained attention [DV13]

10

Linear Temporal Logic

10

Linear Temporal Logic

p ∧ q

p and q hold

p

q

10

Linear Temporal Logic

X(p ∧ q)

tomorrow p and q hold

p

q

10

Linear Temporal Logic

F(p ∧ q)

eventually p and q hold

p

q

10

Linear Temporal Logic

G(p ∧ q)

p and q hold always

p

q

p

q

p

q

p

q

p

q

p

q

10

Linear Temporal Logic

p U q

p holds until q holds

q

pp p p

10

Linear Temporal Logic over Finite Traces

10

Linear Temporal Logic over Finite Traces

Xp?

10

Linear Temporal Logic over Finite Traces

Xp is ⊥

10

Linear Temporal Logic over Finite Traces

X̃p ≡ ¬X¬p is ⊤

weak tomorrow

10

Linear Temporal Logic over Finite Traces

X⊤ is ⊥
X̃⊥ is ⊤

11

First-order temporal logic

In FOLTL we mix classical first-order logic with LTL temporal operators.

∀x∃y G
(
p(x)→ F(q(x , y))

)
G
(
∀xy (p(x , y)→ X̃p(x , y + 1))

)
∀x X¬p(x)∧ X∃x p(x)

12

First-order temporal logic

FOLTL is interpreted over sequences of first-order structures.
possibly over multisorted signatures;
first-order features interpreted over the current structure;
temporal operators to move from one structure to another;
the domain of each sort is arbitrary but constant throughout the sequence.

13

First-order temporal logic

FOLTL is famous for being highly undecidable, but, for a fragment F such that:
the underlying FO fragment is decidable; and
temporal formulas are monodic;

only one free variable inside temporal operators;

constants in the signature are considered rigid;
then FOLTL(F) is decidable [HWZ00]

14

Decidable fragments

Are there decidable fragments of FO?
monadic fragment
Bernays-Schönfinkel-Ramsey fragment (∃∗∀∗/ =)
Ackermann fragment (∃∗∀∃∗)
Gödel-Kalmár-Schütte fragment (∃∗∀∀∃∗)
Skolem fragment
two-variable fragment
guarded fragment
separated fragment
combinations of the above in multi-sorted signatures
many description logics are decidable FO fragments in disguise

See [Voi19] for a detailed survey.

15

THE PAST:
LTL MODULO THEORIES

16

FOLTL in practice

There have been many developments in the world of first-order theorem proving.
many good solvers (SPASS, Vampire, E, etc.);
not specific to decidable fragments, however.

Can we use these as a foundation of FOLTL reasoning? Yes.
See e.g., TSPASS, a solver for monodic first-order temporal logic

17

FOLTL in practice

However, the monodic temporal fragment is limited for applications.

Imagine modeling an update query on an SQL database:

update R set x = x - 1 where x > 0

In FOLTL, it can become something like:

∀k∀x

((
R(k , x)∧ x > 0→ X(¬R(k, x)∧ R(k, x − 1))

)
∧
(
R(k , x)∧ x ⩽ 0→ XR(k, x)

))

We need to accept dealing with semi-decidability.

18

Satisfiability Modulo Theories

There is another approach at first-order reasoning:
satisfiability modulo theories
bottom-up approach:

let’s add to SAT solvers bits of tractable first-order reasoning step by step

SMT solvers are strong at quantifier-free reasoning over specific theories useful for
program verification

linear integer arithmetics/real arithmetics
arrays
bitvectors
constrained Horn clauses
algebraic data types

sometimes quantification works, as well

19

LTLf modulo theories

LTLMT
f is a sweet spot in the specification of infinite-state properties. [IJCAI 22]

efficient solvers

expressiveness
FOLTL

SMT

LTLMT
f

20

LTLf modulo theories

LTLMT
f extends LTLf by introducing some first-order elements.

let Σ be a first-order signature and T a Σ-theory
LTLMT

f is interpreted over finite words of T -structures
predicates and function symbols are rigid
constants are non-rigid, i.e., change over time

this is not covered by existing decidability results about FOLTL

20

LTLf modulo theories

LTLMT
f extends LTLf by introducing some first-order elements.

terms can refer to the value of constants at the next or previous state.

t := c | x | f (t1, . . . , tn) |⃝ c |⃝∼ c |◁ c |◁∼ c

LTLf propositions are replaced by first-order sentences

λ := p(t1, . . . , tn) | ¬λ | λ∨ λ | λ∧ λ | ∃x λ | ∀x λ
ϕ := λ | ¬ϕ | ϕ∨ ϕ | ϕ∧ ϕ | Xϕ | X̃ϕ | Yϕ | Zϕ

| ϕ U ϕ | ϕ R ϕ | ϕ S ϕ | ϕ T ϕ

20

LTLf modulo theories

LTLMT
f extends LTLf by introducing some first-order elements.

terms can refer to the value of constants at the next or previous state.

t := c | x | f (t1, . . . , tn) |⃝ c |⃝∼ c |◁ c |◁∼ c

LTLf propositions are replaced by first-order sentences

λ := p(t1, . . . , tn) | ¬λ | λ∨ λ | λ∧ λ | ∃x λ | ∀x λ
ϕ := λ | ¬ϕ | ϕ∨ ϕ | ϕ∧ ϕ | Xϕ | X̃ϕ | Yϕ | Zϕ

| ϕ U ϕ | ϕ R ϕ | ϕ S ϕ | ϕ T ϕ

20

LTLf modulo theories

LTLMT
f extends LTLf by introducing some first-order elements.

terms can refer to the value of constants at the next or previous state.

t := c | x | f (t1, . . . , tn) |⃝ c |⃝∼ c |◁ c |◁∼ c

LTLf propositions are replaced by first-order sentences

λ := p(t1, . . . , tn) | ¬λ | λ∨ λ | λ∧ λ | ∃x λ | ∀x λ
ϕ := λ | ¬ϕ | ϕ∨ ϕ | ϕ∧ ϕ | Xϕ | X̃ϕ | Yϕ | Zϕ

| ϕ U ϕ | ϕ R ϕ | ϕ S ϕ | ϕ T ϕ

20

LTLf modulo theories

LTLMT
f extends LTLf by introducing some first-order elements.

terms can refer to the value of constants at the next or previous state.

t := c | x | f (t1, . . . , tn) |⃝ c |⃝∼ c |◁ c |◁∼ c

LTLf propositions are replaced by first-order sentences

λ := p(t1, . . . , tn) | ¬λ | λ∨ λ | λ∧ λ | ∃x λ | ∀x λ
ϕ := λ | ¬ϕ | ϕ∨ ϕ | ϕ∧ ϕ | Xϕ | X̃ϕ | Yϕ | Zϕ

| ϕ U ϕ | ϕ R ϕ | ϕ S ϕ | ϕ T ϕ

21

Examples

G(a = 2b) (a < b) U (b = 0) G(a > 5)∧ F(a = 0)

G(∃x(a = 2x))

21

Examples

G(a = 2b) (a < b) U (b = 0) G(a > 5)∧ F(a = 0)

G(∃x(a = 2x))

21

Examples

G(a = 2b) (a < b) U (b = 0) G(a > 5)∧ F(a = 0)

G(∃x(a = 2x))

21

Examples

G(a = 2b) (a < b) U (b = 0) G(a > 5)∧ F(a = 0)

G(∃x(a = 2x))

21

Examples

G(a = 2b) (a < b) U (b = 0) G(a > 5)∧ F(a = 0)

G(∃x(a = 2x))

21

Examples

a = 0 ∧ ((⃝ a = a + 1) U a = 42)

b = 1 ∧ G(⃝∼ b = b + 1 ∧ a = 2b)

G(p(a)→ X̃p(◁ a + 1))

21

Examples

a = 0 ∧ ((⃝ a = a + 1) U a = 42)

b = 1 ∧ G(⃝∼ b = b + 1 ∧ a = 2b)

G(p(a)→ X̃p(◁ a + 1))

21

Examples

a = 0 ∧ ((⃝ a = a + 1) U a = 42)

b = 1 ∧ G(⃝∼ b = b + 1 ∧ a = 2b)

G(p(a)→ X̃p(◁ a + 1))

21

Examples

a = 0 ∧ ((⃝ a = a + 1) U a = 42)

b = 1 ∧ G(⃝∼ b = b + 1 ∧ a = 2b)

G(p(a)→ X̃p(◁ a + 1))

22

(Un)decidability

LTLMT
f is undecidable, but:
it is semi-decidable
so we can get something useful, sometimes:

models of satisfiable formulas
counterexamples of specifications over bugged systems

moreover, we have some interesting decidable fragments [ECAI 23]
why finite traces?

on infinite traces, LTLMT is not even semi-decidable.

23

Decidable fragments

(MC) Formulas over LRA where all iteration conditions are monotonicity constraints, i.e.,
variable-to-variable or variable-to-constant comparisons, e.g.:

a < 0 ∧ b = 1 ∧ ((⃝ b > b ∧⃝ a ⩽ a) U a = b)

(IPC) Formulas over LIA where all iteration conditions are integer periodicity constraints, e.g.:

(b ≡3 a) U (a > 42)∧ F(a + b = c)

Iteration conditions:
α in α U β
β in α R β

23

Decidable fragments

(BL) Bounded lookback formulas, that generalize the above two by requiring that cross-state
interaction is restricted to finitely many steps back. What does it mean?

23

Decidable fragments

Bounded lookback formula

p(a,⃝ b) U (⃝ a = a + b)

a0 a1 a2 a3

b0 b1 b2 b3

p(a0, b1) p(a1, b2) a3 = a2 + b2

23

Decidable fragments

Bounded lookback formula

p(a,⃝ b) U (⃝ a = a + b)

a0 a1 a2 a3

b0 b1 b2 b3

p(a0, b1) p(a1, b2) a3 = a2 + b2

23

Decidable fragments

Bounded lookback formula

p(a,⃝ b) U (⃝ a = a + b)

a0 a1 a2 a3

b0 b1 b2 b3

p(a0, b1) p(a1, b2) a3 = a2 + b2

23

Decidable fragments

Bounded lookback formula

p(a,⃝ b) U (⃝ a = a + b)

a0 a1 a2 a3

b0 b1 b2 b3

p(a0, b1) p(a1, b2) a3 = a2 + b2

23

Decidable fragments

Non-BL formula

a < 0 ∧ b = 1 ∧ ((⃝ b > b ∧⃝ a ⩽ a) U a = b)

a0 a1 a2 a3

b0 b1 b2 b3

a1 ⩽ a0

b1 > b0

a2 ⩽ a1

b2 > b1

a3 ⩽ a2

b3 > b2

a3 = b3

23

Decidable fragments

Non-BL formula

a < 0 ∧ b = 1 ∧ ((⃝ b > b ∧⃝ a ⩽ a) U a = b)

a0 a1 a2 a3

b0 b1 b2 b3

a1 ⩽ a0

b1 > b0

a2 ⩽ a1

b2 > b1

a3 ⩽ a2

b3 > b2

a3 = b3

23

Decidable fragments

Non-BL formula

a < 0 ∧ b = 1 ∧ ((⃝ b > b ∧⃝ a ⩽ a) U a = b)

a0 a1 a2 a3

b0 b1 b2 b3

a1 ⩽ a0

b1 > b0

a2 ⩽ a1

b2 > b1

a3 ⩽ a2

b3 > b2

a3 = b3

23

Decidable fragments

Non-BL formula

a < 0 ∧ b = 1 ∧ ((⃝ b > b ∧⃝ a ⩽ a) U a = b)

a0 a1 a2 a3

b0 b1 b2 b3

a1 ⩽ a0

b1 > b0

a2 ⩽ a1

b2 > b1

a3 ⩽ a2

b3 > b2

a3 = b3

23

Decidable fragments

Non-BL formula

a < 0 ∧ b = 1 ∧ ((⃝ b > b ∧⃝ a ⩽ a) U a = b)

a0 a1 a2 a3

b0 b1 b2 b3

a1 ⩽ a0

b1 > b0

a2 ⩽ a1

b2 > b1

a3 ⩽ a2

b3 > b2

a3 = b3

23

Decidable fragments

(NCS) Formulae without cross-state comparisons, i.e., without any ⃝ c , ⃝∼ c , e.g.:

(a > b U a + b = 2c)∧ G(a + b > 0)

(FX) Formulas where the only temporal operators are F, X, and X̃, e.g.:

F(p(⃝ a)∧ X(¬p(a)))∧ XF(r(a, b)∨ r(⃝ a, b))

24

LTLMT
f in practice

The SAT encoding of Reynolds’ tableau can be extended to an SMT encoding for LTLMT
f .

implemented in our BLACK solver1 for arithmetic theories;
given to off-the-shelf SMT solvers such as Z3 [MB08], cvc5 [Bar+22], etc.

1https://www.black-sat.org

https://www.black-sat.org

25

Verification of LTLMT
f properties

Which systems can we verify LTLMT
f formulas on?

Knowledge-base driven Dynamic Systems (KDS):
infinite-state transition systems

D = ⟨K, I (X),T (X ,X ′),F (X)⟩

states are structures over the first-order theory K
I (X), T (X ,X ′), F (X) are arbitrary first-order formulas over the theory K

initial states satisfying I (X)
final states satisfying F (X)
transition relation expressed by T (X ,X ′)

26

Verification of KDSs

Let D be a KDS and ϕ an LTLMT
f formula:

all the executions of a KDS D can be represented by an LTLMT
f formula ψD

model-checking of ϕ over D reduces to satisfiability of:

γ ≡ ψD ∧ ¬ϕ

if γ is satisfiable, the specification does not hold and the model is a counterexample
if γ is unsatisfiable, the specification is valid over D
this needs non-rigid predicates: only semi-decidable!

27

Some early experiments

Test setting:
simulation of a company hiring process
nondeterministic transitions:

dependent on arithmetic constraints
acting on unbounded relational data

minimal length of the counterexamples
dependent over scalable parameter N
two modelings of the same system:

P1 employs arithmetic constraints
P2 avoids arithmetics, simulates
constraints by other means

two different properties for each variant

init app eval final

xwinners++
if underr. then xunder++

3·xunder>xwinners

ϕ1
s ≡ G(xstate = final → 2xunder > xwinners)

ϕ1
ℓ ≡ G

(
xstate = app →
F (xstate = final ∧ 2xunder > xwinners)

)

27

Some early experiments

Results:
5 minutes timeout reached at N = 70
exponential growth

but could be much worse,
the problem is undecidable!

liveness property not harder than the
safety one
system with explicit arithmetics
faster to verify

0 10 20 30 40 50 60 70

1

10

100

N

T
im

e
(s

ec
on

ds
)

P1 over ϕ1
s

P1 over ϕ1
ℓ

P2 over ϕ2
s

P2 over ϕ2
ℓ

28

THE PRESENT:
FIRST-ORDER AUTOMATA

29

Going beyond LTLMT
f

LTLMT
f is limited in many ways:
many complex systems need evolving predicates;
nesting of quantifiers and temporal operators is often essential
we want to approach full FOLTL.

30

The need for automata

In the finite-state setting, automata are essential:
operational counterpart of temporal logics
basis of many algorithms and techniques

We want a class of automata for FOLTL.

31

First-order automata

What may an infinite-state first-order automaton look like?
states: first-order structures over a state signature Γ ;
letters: first-order structures over an alphabet signature Σ;
initial states: a class of Γ -structures;
final states: a class of Γ -structures;
transition: a relation between:

a Γ -structure (source state),
a Σ-structure (letter), and
another Γ -structure (dest. state).

But this is algorithmically untractable.

32

Symbolic representation

A finite-state automaton:
A = ⟨Σ,Q,Q0,∆,F ⟩

A symbolic finite-state automaton:

A = ⟨Σ,X , I (X),T (X ,Σ,X ′),F (X)⟩

A first-order automaton:
A = ⟨Σ, Γ ,ϕI ,ϕT ,ϕF ⟩

where:
Σ is the word signature and Γ is the state signature;
ϕI and ϕF are Γ -sentences;
ϕT is a sentence over Γ ∪ Σ ∪ Γ ′.

32

Symbolic representation

A finite-state automaton:
A = ⟨Σ,Q,Q0,∆,F ⟩

A symbolic finite-state automaton:

A = ⟨Σ,X , I (X),T (X ,Σ,X ′),F (X)⟩

A first-order automaton:
A = ⟨Σ, Γ ,ϕI ,ϕT ,ϕF ⟩

where:
Σ is the word signature and Γ is the state signature;
ϕI and ϕF are Γ -sentences;
ϕT is a sentence over Γ ∪ Σ ∪ Γ ′.

33

First-order automata

A first-order automaton:
A = ⟨Σ, Γ ,ϕI ,ϕT ,ϕF ⟩

where:
Σ is the word signature and Γ is the state signature;
ϕI and ϕF are Γ -sentences;
ϕT is a sentence over Γ ∪ Σ ∪ Γ ′.

A word (sequence of Σ-structures) σ = ⟨σ0, . . . ,σn−1⟩ is accepted iff
there is a trace (sequence of Γ -structures) ρ = ⟨ρ0, . . . , ρn⟩ such that:

ρ0 |= ϕ0;
ρi ∪ σi ∪ ρ ′i+1 |= ϕT ;
ρn |= ϕF .

34

First-order T -regular languages

A set of first-order words whose structures come from a theory T is a T -language.

A T -language is first-order T -regular if there is a first-order automaton accepting it.

35

First-order T -regular languages

Theorem (Closure properties)

First-order T -regular languages are closed by:
union;
intersection;
concatenation;
Kleene star.

As an example we see how to prove concatenation.

36

Concatenation

We have two automata A1 = ⟨Σ, Γ1,ϕ1
0,ϕ

1
T ,ϕ

1
F ⟩ and A2 = ⟨Σ, Γ2,ϕ2

0,ϕ
2
T ,ϕ

2
F ⟩.

We want A = ⟨Σ, Γ ,ϕ0,ϕT ,ϕF ⟩ such that L(A) = L(A1) · L(A2).
suppose for a moment that ϕT can be an existential second-order sentence;
then, what about:

ϕT ≡ (p ∧ ϕ1
T ∧ p ′)∨ (¬p ∧ ϕ2

T ∧ ¬p ′)∨(
p ∧ ¬p ′ ∧ ϕ1

F ∧ ∃Γ ′′
(
ϕ2

0[Γ/Γ
′′]∧ ϕ2

T [Γ/Γ
′′]
))

with Γ = Γ1 ∪ Γ2 ∪ {p}.

37

Concatenation

What about these existential second-order quantifiers?

ϕT ≡ (p ∧ ϕ1
T ∧ p ′)∨ (¬p ∧ ϕ2

T ∧ ¬p ′)∨(
p ∧ ¬p ′ ∧ ϕ1

F ∧ ∃Γ ′′
(
ϕ2

0[Γ/Γ
′′]∧ ϕ2

T [Γ/Γ
′′]
))

Now the predicates in Γ ′′ can be added to Γ itself:
the semantics of the automata will require the existence of their interpretation;
we get back a first-order automaton on an extended state signature.

37

Concatenation

What about these existential second-order quantifiers?

ϕT ≡ ∃Γ ′′
(p ∧ ϕ1

T ∧ p ′)∨ (¬p ∧ ϕ2
T ∧ ¬p ′)∨(

p ∧ ¬p ′ ∧ ϕ1
F ∧ (ϕ2

0[Γ/Γ
′′]∧ ϕ2

T [Γ/Γ
′′])
)

Now the predicates in Γ ′′ can be added to Γ itself:
the semantics of the automata will require the existence of their interpretation;
we get back a first-order automaton on an extended state signature.

37

Concatenation

What about these existential second-order quantifiers?

ϕT ≡ ∃Γ ′′
(p ∧ ϕ1

T ∧ p ′)∨ (¬p ∧ ϕ2
T ∧ ¬p ′)∨(

p ∧ ¬p ′ ∧ ϕ1
F ∧ (ϕ2

0[Γ/Γ
′′]∧ ϕ2

T [Γ/Γ
′′])
)

Now the predicates in Γ ′′ can be added to Γ itself:
the semantics of the automata will require the existence of their interpretation;
we get back a first-order automaton on an extended state signature.

37

Concatenation

What about these existential second-order quantifiers?

ϕT ≡

(p ∧ ϕ1
T ∧ p ′)∨ (¬p ∧ ϕ2

T ∧ ¬p ′)∨(
p ∧ ¬p ′ ∧ ϕ1

F ∧ (ϕ2
0[Γ/Γ

′′]∧ ϕ2
T [Γ/Γ

′′])
)

Now the predicates in Γ ′′ can be added to Γ itself:
the semantics of the automata will require the existence of their interpretation;
we get back a first-order automaton on an extended state signature.

38

Complementation

Complementation is missing from the picture:
easy for deterministic automata;
so determinization is the key;
how to symbolically represent the subset construction of a first-order automaton?

we are working on it. . .

39

Capturing FOLTL

A major feature of automata is that they capture temporal logic.

Can we capture FOLTL with first-order automata?

40

Capturing FOLTL

We need some ingredients.

Definition (Stepped normal form)

Given an FOLTL formula ϕ, the step normal form of ϕ, denoted snf(ϕ), is the formula defined
recursively as follows:

snf(p(t1, . . . , tn)) = p(t1, . . . , tn) and snf(t1 = t2) = (t1 = t2);
snf(Qxϕ) = Qx snf(ϕ), where Q ∈ {∀,∃} and x is a first-order variable;
snf(¬ϕ) = ¬ snf(ϕ);
snf(ϕ1 ◦ ϕ2) = snf(ϕ1) ◦ snf(ϕ2), where ◦ ∈ {∧,∨}

snf(◦ϕ) = ◦ϕ where ◦ ∈ {X,Y, X̃,Z};
snf(ϕ1 U ϕ2) = snf(ϕ2)∨ (snf(ϕ1)∧ X(ϕ1 U ϕ2));
snf(ϕ1 R ϕ2) = snf(ϕ2)∧ (snf(ϕ1)∨ X̃(ϕ1 R ϕ2)).

41

Capturing FOLTL

Definition (Closure)

The closure of a FOLTL sentence ϕ is the set C(ϕ) defined as follows:
Xϕ ∈ C(ϕ);
ψ ∈ C(ϕ) for any subformula ψ of ϕ (including itself);
for any ϕ1 U ϕ2 ∈ C(ϕ) we have X(ϕ1 U ϕ2) ∈ C(ϕ);
for any ϕ1 R ϕ2 ∈ C(ϕ) we have X̃(ϕ1 R ϕ2) ∈ C(ϕ).

42

Capturing FOLTL

We also define the following subsets of the closure:

XS = {xsψ | Xψ ∈ C(ϕ)}

X̃S = {wsψ | X̃ψ ∈ C(ϕ)}

where xsψ and wsψ are predicates of the arity n corresponding to the number of free first-order
variables in ψ.

43

Capturing FOLTL

Let ϕ be a FOLTL sentence. The automaton of ϕ is A(ϕ) = ⟨Σ, Γ ,ϕ0,ϕT ,ϕF ⟩ where:

the state signature is Γ = XS ∪ X̃S;
the initial and final conditions are:

ϕ0 ≡ xsϕ

ϕF ≡
∧

wsψ∈X̃S

∀x .wsψ(x)∧
∧

xsψ∈XS

∀x .¬xsψ(x)

the transition relation is:

ϕT ≡
∧

sψ∈XS∪X̃S

∀x .[sψ(x)↔ snf ′S(ψ(x))]

44

Checking (non-)emptiness

Of course checking emptiness of first-order automata is undecidable.

However, we can state a semi-algorithm for non-emptiness with some assumptions.

45

Checking (non-)emptiness

For k > 0, let:

JAKFk ≡ ϕ0
0 ∧

k−1∧
i=0

ϕk
T ∧ ϕk

F

1: procedure NonEmpty(A)
2: k ← 0
3: while true do
4: if JAKFk is satisfiable then
5: return not empty
6: end if
7: k ← k + 1
8: end while
9: end procedure

46

Decidable fragments

Recall the result from the literature we cited before.

For a fragment F such that:
the underlying FO fragment is decidable; and
temporal formulas are monodic;

only one free variable inside temporal operators;

constants in the signature are considered rigid;
then FOLTL(F) is decidable [HWZ00]

47

Decidable fragments

Can we recover this result from first-order automata? Yes.
if we follow the encoding we notice that monodic FOLTL sentences translate into
automata with monadic state signature Γ ;
monadic predicates are easier to deal with (e.g., monadic FO is decidable);
we can translate a monadic Γ into a Γ containing only propositions;
emptyness for this kind of automata is decidable (they are almost finite-state).

48

CONCLUSIONS

49

First-order automata in practice

Our satisfiability checking tool BLACK is currently being refactored to support full FOLTL
through first-order automata.

experimental results soon, maybe another iFM2 talk?

50

Better algorithms

Can we go beyond the simple unraveling semi-algorithm shown before?

For better practical results we need more theory.

Interesting paths we are exploring:
fixpoint computation based on second-order quantifier elimination [GSS08];
encoding into constrained Horn clauses [GB19];

51

What we have not seen today

We can add past operators to FOLTL.
if we start from pure-past FOLTL sentences, we directly obtain deterministic first-order
automata;
this happens with pure-past LTL as well and is crucial for reactive synthesis;
2EXPTIME for LTL, EXPTIME for pure-past LTL, because of this fact;
can this help with reactive synthesis for FOLTL specifications?

52

Conclusions

We want first-order temporal logics to become practical tools for infinite-state specification
and verification.

long way ahead;
little steps already done;
first-order automata as a reasoning and algorithmic tool;
many theoretical and algorithmic developments missing yet.

Th
an

k
yo
u!

Que
sti

on
s?

52

Conclusions

We want first-order temporal logics to become practical tools for infinite-state specification
and verification.

long way ahead;
little steps already done;
first-order automata as a reasoning and algorithmic tool;
many theoretical and algorithmic developments missing yet.

Th
an

k
yo
u!

Que
sti

on
s?

53

REFERENCES

54

References

[AD94] Rajeev Alur and David L. Dill. ‘A Theory of Timed Automata’. In: Theor. Com-
put. Sci. 126.2 (1994), pp. 183–235. doi: 10.1016/0304-3975(94)90010-8.

[AH94] Rajeev Alur and Thomas A. Henzinger. ‘A Really Temporal Logic’. In: Journal of
the ACM 41.1 (1994), pp. 181–204. doi: 10.1145/174644.174651.

[Alu+05] Rajeev Alur, Michael Benedikt, Kousha Etessami, Patrice Godefroid, Thomas W.
Reps and Mihalis Yannakakis. ‘Analysis of recursive state machines’. In: ACM
Trans. Program. Lang. Syst. 27.4 (2005), pp. 786–818. doi: 10.1145/1075382.
1075387.

[Alu+92] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger and Pei-Hsin Ho. ‘Hybrid
Automata: An Algorithmic Approach to the Specification and Verification of Hybrid
Systems’. In: Hybrid Systems. Ed. by Robert L. Grossman, Anil Nerode, Anders P.
Ravn and Hans Rischel. Vol. 736. Lecture Notes in Computer Science. Springer,
1992, pp. 209–229. doi: 10.1007/3-540-57318-6_30.

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/174644.174651
https://doi.org/10.1145/1075382.1075387
https://doi.org/10.1145/1075382.1075387
https://doi.org/10.1007/3-540-57318-6_30

55

References (2)

[AM04] Rajeev Alur and P. Madhusudan. ‘Visibly pushdown languages’. In: Proceedings
of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA,
June 13-16, 2004. Ed. by László Babai. ACM, 2004, pp. 202–211. doi: 10.1145/
1007352.1007390.

[Bar+22] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt,
Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres
Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare
Tinelli and Yoni Zohar. ‘cvc5: A Versatile and Industrial-Strength SMT Solver’.
In: Proceedings of the 28th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Ed. by Dana Fisman and Grigore Rosu.
Vol. 13243. Lecture Notes in Computer Science. Springer, 2022, pp. 415–442. doi:
10.1007/978-3-030-99524-9_24.

https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1007/978-3-030-99524-9_24

56

References (3)

[BK18] James Brotherston and Max I. Kanovich. ‘On the Complexity of Pointer Arithmetic
in Separation Logic’. In: Proceedings of the 16th Asian Symposium on Program-
ming Languages and Systems. Ed. by Sukyoung Ryu. Vol. 11275. Lecture Notes
in Computer Science. Springer, 2018, pp. 329–349. doi: 10.1007/978-3-030-
02768-1_18.

[BMP10] Massimo Benerecetti, Stefano Minopoli and Adriano Peron. ‘Analysis of Timed
Recursive State Machines’. In: Proceedings of the 17th International Symposium
on Temporal Representation and Reasoning. Ed. by Nicolas Markey and Jef Wijsen.
IEEE Computer Society, 2010, pp. 61–68. doi: 10.1109/TIME.2010.10.

[Boj+06] Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin and Claire
David. ‘Two-Variable Logic on Words with Data’. In: 21th IEEE Symposium on
Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA,
Proceedings. IEEE Computer Society, 2006, pp. 7–16. doi: 10.1109/LICS.2006.
51.

[BZ83] Daniel Brand and Pitro Zafiropulo. ‘On Communicating Finite-State Machines’.
In: J. ACM 30.2 (1983), pp. 323–342. doi: 10.1145/322374.322380.

https://doi.org/10.1007/978-3-030-02768-1_18
https://doi.org/10.1007/978-3-030-02768-1_18
https://doi.org/10.1109/TIME.2010.10
https://doi.org/10.1109/LICS.2006.51
https://doi.org/10.1109/LICS.2006.51
https://doi.org/10.1145/322374.322380

57

References (4)

[CGM13] Diego Calvanese, Giuseppe De Giacomo and Marco Montali. ‘Foundations of
data-aware process analysis: a database theory perspective’. In: Proceedings of
the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Data-
base Systems. Ed. by Richard Hull and Wenfei Fan. ACM, 2013, pp. 1–12. doi:
10.1145/2463664.2467796.

[Cim+20] Alessandro Cimatti, Alberto Griggio, Enrico Magnago, Marco Roveri and Stefano
Tonetta. ‘SMT-based satisfiability of first-order LTL with event freezing functions
and metric operators’. In: Inf. Comput. 272 (2020), p. 104502. doi: 10.1016/j.
ic.2019.104502. url: https://doi.org/10.1016/j.ic.2019.104502.

[CMP22] Michele Chiari, Dino Mandrioli and Matteo Pradella. ‘A First-Order Complete
Temporal Logic for Structured Context-Free Languages’. In: Log. Methods Com-
put. Sci. 18.3 (2022). doi: 10.46298/lmcs-18(3:11)2022.

https://doi.org/10.1145/2463664.2467796
https://doi.org/10.1016/j.ic.2019.104502
https://doi.org/10.1016/j.ic.2019.104502
https://doi.org/10.1016/j.ic.2019.104502
https://doi.org/10.46298/lmcs-18(3:11)2022

58

References (5)

[CYO01] Cristiano Calcagno, Hongseok Yang and Peter W. O’Hearn. ‘Computability and
Complexity Results for a Spatial Assertion Language for Data Structures’. In: Pro-
ceedings of the 21st Conference on Foundations of Software Technology and The-
oretical Computer Science. Ed. by Ramesh Hariharan, Madhavan Mukund and V.
Vinay. Vol. 2245. Lecture Notes in Computer Science. Springer, 2001, pp. 108–
119. doi: 10.1007/3-540-45294-X_10.

[DLN07] Stéphane Demri, Ranko Lazic and David Nowak. ‘On the freeze quantifier in Constraint
LTL: Decidability and complexity’. In: Inf. Comput. 205.1 (2007), pp. 2–24. doi:
10.1016/j.ic.2006.08.003.

[DLV19] Alin Deutsch, Yuliang Li and Victor Vianu. ‘Verification of Hierarchical Artifact
Systems’. In: ACM Trans. Database Syst. 44.3 (2019), 12:1–12:68. doi: 10.1145/
3321487.

[DQ21] Stéphane Demri and Karin Quaas. ‘Concrete domains in logics: a survey’. In:
ACM SIGLOG News 8.3 (2021), pp. 6–29. doi: 10.1145/3477986.3477988.
url: https://doi.org/10.1145/3477986.3477988.

https://doi.org/10.1007/3-540-45294-X_10
https://doi.org/10.1016/j.ic.2006.08.003
https://doi.org/10.1145/3321487
https://doi.org/10.1145/3321487
https://doi.org/10.1145/3477986.3477988
https://doi.org/10.1145/3477986.3477988

59

References (6)

[Dro+17] Manfred Droste, Stefan Dück, Dino Mandrioli and Matteo Pradella. ‘Weighted
Operator Precedence Languages’. In: Procedings of the 42nd International Sym-
posium on Mathematical Foundations of Computer Science. Ed. by Kim G. Larsen,
Hans L. Bodlaender and Jean-François Raskin. Vol. 83. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017, 31:1–31:15. doi: 10.4230/LIPIcs.MFCS.
2017.31.

[DV13] Giuseppe De Giacomo and Moshe Y. Vardi. ‘Linear Temporal Logic and Linear
Dynamic Logic on Finite Traces’. In: IJCAI 2013, Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013.
Ed. by Francesca Rossi. IJCAI/AAAI, 2013, pp. 854–860.

[ECAI 23] Luca Geatti, Alessandro Gianola, Nicola Gigante and Sarah Winkler. ‘Decidable
Fragments of LTLf Modulo Theories’. In: Proceedings of the 26th European Con-
ference on Artificial Intelligence. 2023.

https://doi.org/10.4230/LIPIcs.MFCS.2017.31
https://doi.org/10.4230/LIPIcs.MFCS.2017.31

60

References (7)

[Fel+23] Paolo Felli, Marco Montali, Fabio Patrizi and Sarah Winkler. ‘Monitoring Arithmetic
Temporal Properties on Finite Traces’. In: Thirty-Seventh AAAI Conference on
Artificial Intelligence, AAAI 2023. Ed. by Brian Williams, Yiling Chen and Jennifer
Neville. AAAI Press, 2023, pp. 6346–6354. doi: 10.1609/aaai.v37i5.25781.

[GB19] Arie Gurfinkel and Nikolaj S. Bjørner. ‘The Science, Art, and Magic of Constrained
Horn Clauses’. In: Proceedings of the 21st International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing. IEEE, 2019, pp. 6–10. doi: 10.
1109/SYNASC49474.2019.00010.

[Ghi+23] Silvio Ghilardi, Alessandro Gianola, Marco Montali and Andrey Rivkin. ‘Safety
Verification and Universal Invariants for Relational Action Bases’. In: Proceed-
ings of the Thirty-Second International Joint Conference on Artificial Intelligence.
ijcai.org, 2023, pp. 3248–3257. doi: 10.24963/ijcai.2023/362.

[GSS08] Dov M. Gabbay, Renate A. Schmidt and Andrzej Szalas. Second-Order Quanti-
fier Elimination - Foundations, Computational Aspects and Applications. Vol. 12.
Studies in logic : Mathematical logic and foundations. College Publications, 2008.
isbn: 978-1-904987-56-7.

https://doi.org/10.1609/aaai.v37i5.25781
https://doi.org/10.1109/SYNASC49474.2019.00010
https://doi.org/10.1109/SYNASC49474.2019.00010
https://doi.org/10.24963/ijcai.2023/362

61

References (8)

[HWZ00] Ian M. Hodkinson, Frank Wolter and Michael Zakharyaschev. ‘Decidable fragment
of first-order temporal logics’. In: Ann. Pure Appl. Log. 106.1-3 (2000), pp. 85–
134. doi: 10.1016/S0168-0072(00)00018-X.

[IJCAI 22] Luca Geatti, Alessandro Gianola and Nicola Gigante. ‘Linear Temporal Logic Modulo
Theories over Finite Traces’. In: Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence. 2022, pp. 2641–2647. doi: 10.24963/ijcai.
2022/366.

[IX19] Radu Iosif and Xiao Xu. ‘Alternating Automata Modulo First Order Theories’.
In: Computer Aided Verification - 31st International Conference, CAV 2019, New
York City, NY, USA, July 15-18, 2019, Proceedings, Part II. Ed. by Isil Dillig and
Serdar Tasiran. Vol. 11562. Lecture Notes in Computer Science. Springer, 2019,
pp. 43–63. doi: 10.1007/978-3-030-25543-5_3.

[JK09] Kurt Jensen and Lars Michael Kristensen. Coloured Petri Nets - Modelling and
Validation of Concurrent Systems. Springer, 2009. doi: 10.1007/b95112.

https://doi.org/10.1016/S0168-0072(00)00018-X
https://doi.org/10.24963/ijcai.2022/366
https://doi.org/10.24963/ijcai.2022/366
https://doi.org/10.1007/978-3-030-25543-5_3
https://doi.org/10.1007/b95112

62

References (9)

[KF94] Michael Kaminski and Nissim Francez. ‘Finite-Memory Automata’. In: Theor.
Comput. Sci. 134.2 (1994), pp. 329–363. doi: 10.1016/0304-3975(94)90242-9.

[Kon+04] Roman Kontchakov, Carsten Lutz, Frank Wolter and Michael Zakharyaschev.
‘Temporalising Tableaux’. In: Stud Logica 76.1 (2004), pp. 91–134. doi: 10.1023/
B:STUD.0000027468.28935.6d.

[Koy90] Ron Koymans. ‘Specifying Real-Time Properties with Metric Temporal Logic’. In:
Real-Time Systems 2.4 (1990), pp. 255–299. doi: 10.1007/BF01995674.

[LVR22] Jianwen Li, Moshe Y. Vardi and Kristin Y. Rozier. ‘Satisfiability checking for
Mission-time LTL (MLTL)’. In: Inf. Comput. 289.Part (2022), p. 104923. doi:
10.1016/j.ic.2022.104923.

[Man20] Alessio Mansutti. ‘Reasoning with separation logics: complexity, expressive power,
proof systems’. PhD thesis. University of Paris-Saclay, France, 2020. url: https:
//tel.archives-ouvertes.fr/tel-03094373.

https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1023/B:STUD.0000027468.28935.6d
https://doi.org/10.1023/B:STUD.0000027468.28935.6d
https://doi.org/10.1007/BF01995674
https://doi.org/10.1016/j.ic.2022.104923
https://tel.archives-ouvertes.fr/tel-03094373
https://tel.archives-ouvertes.fr/tel-03094373

63

References (10)

[MB08] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. ‘Z3: An Efficient SMT
Solver’. In: Proceedings of the 14th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems. Ed. by C. R. Ramakrishnan
and Jakob Rehof. Vol. 4963. Lecture Notes in Computer Science. Springer, 2008,
pp. 337–340. doi: 10.1007/978-3-540-78800-3_24. url: https://doi.org/
10.1007/978-3-540-78800-3%5C_24.

[MN04] Oded Maler and Dejan Nickovic. ‘Monitoring Temporal Properties of Continuous
Signals’. In: Proceedings of Formal FORMATS 2004 and FTRTFT 2004. Ed.
by Yassine Lakhnech and Sergio Yovine. Vol. 3253. Lecture Notes in Computer
Science. Springer, 2004, pp. 152–166. doi: 10.1007/978-3-540-30206-3_12.

[Mur89] Tadao Murata. ‘Petri nets: Properties, analysis and applications’. In: Proc. IEEE
77.4 (1989), pp. 541–580. doi: 10.1109/5.24143.

[Seg06] Luc Segoufin. ‘Automata and Logics for Words and Trees over an Infinite Alphabet’.
In: Proceedings of the 20th International Workshop on Computer Science Lo-
gic. Ed. by Zoltán Ésik. Vol. 4207. Lecture Notes in Computer Science. Springer,
2006, pp. 41–57. doi: 10.1007/11874683_3.

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3%5C_24
https://doi.org/10.1007/978-3-540-78800-3%5C_24
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1109/5.24143
https://doi.org/10.1007/11874683_3

64

References (11)

[Voi19] Marco Voigt. ‘Decidable fragments of first-order logic and of first-order linear
arithmetic with uninterpreted predicates’. PhD thesis. Saarland University, Saarbrücken,
Germany, 2019. url: https://publikationen.sulb.uni- saarland.de/
handle/20.500.11880/27767.

[Woj99] Arkadiusz Wojna. ‘Counter Machines’. In: Inf. Process. Lett. 71.5-6 (1999), pp. 193–
197. doi: 10.1016/S0020-0190(99)00116-7.

https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/27767
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/27767
https://doi.org/10.1016/S0020-0190(99)00116-7

	First-Order Temporal Logics
	The past: LTL modulo theories
	The present: first-order automata
	Conclusions
	References

