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Infinite-state specification and verification

Model-checking and other verification techniques for finite-state systems have been extremely
successful in the past decades.

However, many real-world scenarios require reasoning over infinite-state systems.
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Infinite-state specification and verification

There are many infinite-state formalisms around.
timed automata [AD94]
hybrid automata [Alu+92]
recursive state machines [Alu+05; BMP10]
visibly pushdown languages [AM04]
operator-precedence languages [Dro+17]
FIFO machines [BZ83]
counter machines [Woj99]
Petri nets [Mur89; JK09]
data-aware systems [DLV19; CGM13; Ghi+23]
automata over infinite alphabets [Seg06; IX19]
register automata [KF94]
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Infinite-state specification and verification

And many logics to talk about them.
precedence oriented temporal logic [CMP22]
metric temporal logics [Koy90; LVR22; AH94]
temporal logics with concrete domains [DQ21]
temporal logics with arithmetics [Fel+23; Cim+20]
separation logic [CYO01; BK18; Man20]
constrained horn clauses [GB19]
logics on data words [Boj+06; DLN07]
signal temporal logic [MN04]
first-order temporal logics [Kon+04]
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First-order Temporal Logic

First-order temporal logics are expressive formalisms to specify properties of infinite-state systems:

badly undecidable, however;
used mostly in really tailored fragments or in knowledge representation applications
where reasoning is not the main task;

Question

Can we make them practical, as a specification language for verification tasks,
while maintaining a substantial fraction of its expressive power?
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First-order automata

In the finite-state setting, automata have played the crucial role of the algorithmic powerhorse
of verification and model checking.

Question

Can we define a similar tool for first-order temporal logic?
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FIRST-ORDER TEMPORAL LOGICS
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Linear Temporal Logic

Let us recap the main concepts of Linear Temporal Logic:
modal logic interpreted over discrete linear orders
traditionally, infinite linear orders
recently, finite models gained attention [DV13]
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Linear Temporal Logic
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Linear Temporal Logic

p ∧ q

p and q hold
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Linear Temporal Logic

X(p ∧ q)
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Linear Temporal Logic
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Linear Temporal Logic
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Linear Temporal Logic

p U q

p holds until q holds

q

pp p p
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Linear Temporal Logic over Finite Traces
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Linear Temporal Logic over Finite Traces

Xp?
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Linear Temporal Logic over Finite Traces

Xp is ⊥
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Linear Temporal Logic over Finite Traces

X̃p ≡ ¬X¬p is ⊤

weak tomorrow



10

Linear Temporal Logic over Finite Traces

X⊤ is ⊥
X̃⊥ is ⊤
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First-order temporal logic

In FOLTL we mix classical first-order logic with LTL temporal operators.

∀x∃y G
(
p(x)→ F(q(x , y))

)
G
(
∀xy (p(x , y)→ X̃p(x , y + 1))

)
∀x X¬p(x)∧ X∃x p(x)
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First-order temporal logic

FOLTL is interpreted over sequences of first-order structures.
possibly over multisorted signatures;
first-order features interpreted over the current structure;
temporal operators to move from one structure to another;
the domain of each sort is arbitrary but constant throughout the sequence.
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First-order temporal logic

FOLTL is famous for being highly undecidable, but, for a fragment F such that:
the underlying FO fragment is decidable; and
temporal formulas are monodic;

only one free variable inside temporal operators;

constants in the signature are considered rigid;
then FOLTL(F ) is decidable [HWZ00]
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Decidable fragments

Are there decidable fragments of FO?
monadic fragment
Bernays-Schönfinkel-Ramsey fragment (∃∗∀∗/ =)
Ackermann fragment (∃∗∀∃∗)
Gödel-Kalmár-Schütte fragment (∃∗∀∀∃∗)
Skolem fragment
two-variable fragment
guarded fragment
separated fragment
combinations of the above in multi-sorted signatures
many description logics are decidable FO fragments in disguise

See [Voi19] for a detailed survey.
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THE PAST:
LTL MODULO THEORIES
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FOLTL in practice

There have been many developments in the world of first-order theorem proving.
many good solvers (SPASS, Vampire, E, etc.);
not specific to decidable fragments, however.

Can we use these as a foundation of FOLTL reasoning? Yes.
See e.g., TSPASS, a solver for monodic first-order temporal logic
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FOLTL in practice

However, the monodic temporal fragment is limited for applications.

Imagine modeling an update query on an SQL database:

update R set x = x - 1 where x > 0

In FOLTL, it can become something like:

∀k∀x

( (
R(k , x)∧ x > 0→ X(¬R(k, x)∧ R(k, x − 1))

)
∧
(
R(k , x)∧ x ⩽ 0→ XR(k, x)

) )

We need to accept dealing with semi-decidability.
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Satisfiability Modulo Theories

There is another approach at first-order reasoning:
satisfiability modulo theories
bottom-up approach:

let’s add to SAT solvers bits of tractable first-order reasoning step by step

SMT solvers are strong at quantifier-free reasoning over specific theories useful for
program verification

linear integer arithmetics/real arithmetics
arrays
bitvectors
constrained Horn clauses
algebraic data types

sometimes quantification works, as well
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LTLf modulo theories

LTLMT
f is a sweet spot in the specification of infinite-state properties. [IJCAI 22]

efficient solvers

expressiveness
FOLTL

SMT

LTLMT
f
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LTLf modulo theories

LTLMT
f extends LTLf by introducing some first-order elements.

let Σ be a first-order signature and T a Σ-theory
LTLMT

f is interpreted over finite words of T -structures
predicates and function symbols are rigid
constants are non-rigid, i.e., change over time

this is not covered by existing decidability results about FOLTL
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LTLf modulo theories

LTLMT
f extends LTLf by introducing some first-order elements.

terms can refer to the value of constants at the next or previous state.

t := c | x | f (t1, . . . , tn) |⃝ c |⃝∼ c |◁ c |◁∼ c

LTLf propositions are replaced by first-order sentences

λ := p(t1, . . . , tn) | ¬λ | λ∨ λ | λ∧ λ | ∃x λ | ∀x λ
ϕ := λ | ¬ϕ | ϕ∨ ϕ | ϕ∧ ϕ | Xϕ | X̃ϕ | Yϕ | Zϕ

| ϕ U ϕ | ϕ R ϕ | ϕ S ϕ | ϕ T ϕ
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Examples

G(a = 2b) (a < b) U (b = 0) G(a > 5)∧ F(a = 0)

G(∃x(a = 2x))



21

Examples

G(a = 2b) (a < b) U (b = 0) G(a > 5)∧ F(a = 0)

G(∃x(a = 2x))



21

Examples

G(a = 2b) (a < b) U (b = 0) G(a > 5)∧ F(a = 0)

G(∃x(a = 2x))



21

Examples

G(a = 2b) (a < b) U (b = 0) G(a > 5)∧ F(a = 0)

G(∃x(a = 2x))



21

Examples

G(a = 2b) (a < b) U (b = 0) G(a > 5)∧ F(a = 0)

G(∃x(a = 2x))



21

Examples

a = 0 ∧ ((⃝ a = a + 1) U a = 42)

b = 1 ∧ G(⃝∼ b = b + 1 ∧ a = 2b)

G(p(a)→ X̃p(◁ a + 1))
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(Un)decidability

LTLMT
f is undecidable, but:
it is semi-decidable
so we can get something useful, sometimes:

models of satisfiable formulas
counterexamples of specifications over bugged systems

moreover, we have some interesting decidable fragments [ECAI 23]
why finite traces?

on infinite traces, LTLMT is not even semi-decidable.
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Decidable fragments

(MC) Formulas over LRA where all iteration conditions are monotonicity constraints, i.e.,
variable-to-variable or variable-to-constant comparisons, e.g.:

a < 0 ∧ b = 1 ∧ ((⃝ b > b ∧⃝ a ⩽ a) U a = b)

(IPC) Formulas over LIA where all iteration conditions are integer periodicity constraints, e.g.:

(b ≡3 a) U (a > 42)∧ F(a + b = c)

Iteration conditions:
α in α U β
β in α R β
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Decidable fragments

(BL) Bounded lookback formulas, that generalize the above two by requiring that cross-state
interaction is restricted to finitely many steps back. What does it mean?
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Decidable fragments

Bounded lookback formula

p(a,⃝ b) U (⃝ a = a + b)

a0 a1 a2 a3

b0 b1 b2 b3

p(a0, b1) p(a1, b2) a3 = a2 + b2
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Decidable fragments

Non-BL formula

a < 0 ∧ b = 1 ∧ ((⃝ b > b ∧⃝ a ⩽ a) U a = b)

a0 a1 a2 a3

b0 b1 b2 b3

a1 ⩽ a0

b1 > b0

a2 ⩽ a1

b2 > b1

a3 ⩽ a2

b3 > b2

a3 = b3
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Decidable fragments

(NCS) Formulae without cross-state comparisons, i.e., without any ⃝ c , ⃝∼ c , e.g.:

(a > b U a + b = 2c)∧ G(a + b > 0)

(FX) Formulas where the only temporal operators are F, X, and X̃, e.g.:

F(p(⃝ a)∧ X(¬p(a)))∧ XF(r(a, b)∨ r(⃝ a, b))
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LTLMT
f in practice

The SAT encoding of Reynolds’ tableau can be extended to an SMT encoding for LTLMT
f .

implemented in our BLACK solver1 for arithmetic theories;
given to off-the-shelf SMT solvers such as Z3 [MB08], cvc5 [Bar+22], etc.

1https://www.black-sat.org

https://www.black-sat.org
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Verification of LTLMT
f properties

Which systems can we verify LTLMT
f formulas on?

Knowledge-base driven Dynamic Systems (KDS):
infinite-state transition systems

D = ⟨K, I (X ),T (X ,X ′),F (X )⟩

states are structures over the first-order theory K
I (X ), T (X ,X ′), F (X ) are arbitrary first-order formulas over the theory K

initial states satisfying I (X )
final states satisfying F (X )
transition relation expressed by T (X ,X ′)
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Verification of KDSs

Let D be a KDS and ϕ an LTLMT
f formula:

all the executions of a KDS D can be represented by an LTLMT
f formula ψD

model-checking of ϕ over D reduces to satisfiability of:

γ ≡ ψD ∧ ¬ϕ

if γ is satisfiable, the specification does not hold and the model is a counterexample
if γ is unsatisfiable, the specification is valid over D
this needs non-rigid predicates: only semi-decidable!
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Some early experiments

Test setting:
simulation of a company hiring process
nondeterministic transitions:

dependent on arithmetic constraints
acting on unbounded relational data

minimal length of the counterexamples
dependent over scalable parameter N
two modelings of the same system:

P1 employs arithmetic constraints
P2 avoids arithmetics, simulates
constraints by other means

two different properties for each variant

init app eval final

xwinners++
if underr. then xunder++

3·xunder>xwinners

ϕ1
s ≡ G(xstate = final → 2xunder > xwinners)

ϕ1
ℓ ≡ G

(
xstate = app →
F (xstate = final ∧ 2xunder > xwinners)

)
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Some early experiments

Results:
5 minutes timeout reached at N = 70
exponential growth

but could be much worse,
the problem is undecidable!

liveness property not harder than the
safety one
system with explicit arithmetics
faster to verify
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THE PRESENT:
FIRST-ORDER AUTOMATA
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Going beyond LTLMT
f

LTLMT
f is limited in many ways:
many complex systems need evolving predicates;
nesting of quantifiers and temporal operators is often essential
we want to approach full FOLTL.
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The need for automata

In the finite-state setting, automata are essential:
operational counterpart of temporal logics
basis of many algorithms and techniques

We want a class of automata for FOLTL.



31

First-order automata

What may an infinite-state first-order automaton look like?
states: first-order structures over a state signature Γ ;
letters: first-order structures over an alphabet signature Σ;
initial states: a class of Γ -structures;
final states: a class of Γ -structures;
transition: a relation between:

a Γ -structure (source state),
a Σ-structure (letter), and
another Γ -structure (dest. state).

But this is algorithmically untractable.
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Symbolic representation

A finite-state automaton:
A = ⟨Σ,Q,Q0,∆,F ⟩

A symbolic finite-state automaton:

A = ⟨Σ,X , I (X ),T (X ,Σ,X ′),F (X )⟩

A first-order automaton:
A = ⟨Σ, Γ ,ϕI ,ϕT ,ϕF ⟩

where:
Σ is the word signature and Γ is the state signature;
ϕI and ϕF are Γ -sentences;
ϕT is a sentence over Γ ∪ Σ ∪ Γ ′.
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First-order automata

A first-order automaton:
A = ⟨Σ, Γ ,ϕI ,ϕT ,ϕF ⟩

where:
Σ is the word signature and Γ is the state signature;
ϕI and ϕF are Γ -sentences;
ϕT is a sentence over Γ ∪ Σ ∪ Γ ′.

A word (sequence of Σ-structures) σ = ⟨σ0, . . . ,σn−1⟩ is accepted iff
there is a trace (sequence of Γ -structures) ρ = ⟨ρ0, . . . , ρn⟩ such that:

ρ0 |= ϕ0;
ρi ∪ σi ∪ ρ ′i+1 |= ϕT ;
ρn |= ϕF .



34

First-order T -regular languages

A set of first-order words whose structures come from a theory T is a T -language.

A T -language is first-order T -regular if there is a first-order automaton accepting it.
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First-order T -regular languages

Theorem (Closure properties)

First-order T -regular languages are closed by:
union;
intersection;
concatenation;
Kleene star.

As an example we see how to prove concatenation.
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Concatenation

We have two automata A1 = ⟨Σ, Γ1,ϕ1
0,ϕ

1
T ,ϕ

1
F ⟩ and A2 = ⟨Σ, Γ2,ϕ2

0,ϕ
2
T ,ϕ

2
F ⟩.

We want A = ⟨Σ, Γ ,ϕ0,ϕT ,ϕF ⟩ such that L(A) = L(A1) · L(A2).
suppose for a moment that ϕT can be an existential second-order sentence;
then, what about:

ϕT ≡ (p ∧ ϕ1
T ∧ p ′)∨ (¬p ∧ ϕ2

T ∧ ¬p ′)∨(
p ∧ ¬p ′ ∧ ϕ1

F ∧ ∃Γ ′′
(
ϕ2

0[Γ/Γ
′′]∧ ϕ2

T [Γ/Γ
′′]
))

with Γ = Γ1 ∪ Γ2 ∪ {p}.
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Concatenation

What about these existential second-order quantifiers?

ϕT ≡ (p ∧ ϕ1
T ∧ p ′)∨ (¬p ∧ ϕ2

T ∧ ¬p ′)∨(
p ∧ ¬p ′ ∧ ϕ1

F ∧ ∃Γ ′′
(
ϕ2

0[Γ/Γ
′′]∧ ϕ2

T [Γ/Γ
′′]
))

Now the predicates in Γ ′′ can be added to Γ itself:
the semantics of the automata will require the existence of their interpretation;
we get back a first-order automaton on an extended state signature.
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Complementation

Complementation is missing from the picture:
easy for deterministic automata;
so determinization is the key;
how to symbolically represent the subset construction of a first-order automaton?

we are working on it. . .
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Capturing FOLTL

A major feature of automata is that they capture temporal logic.

Can we capture FOLTL with first-order automata?
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Capturing FOLTL

We need some ingredients.

Definition (Stepped normal form)

Given an FOLTL formula ϕ, the step normal form of ϕ, denoted snf(ϕ), is the formula defined
recursively as follows:

snf(p(t1, . . . , tn)) = p(t1, . . . , tn) and snf(t1 = t2) = (t1 = t2);
snf(Qxϕ) = Qx snf(ϕ), where Q ∈ {∀,∃} and x is a first-order variable;
snf(¬ϕ) = ¬ snf(ϕ);
snf(ϕ1 ◦ ϕ2) = snf(ϕ1) ◦ snf(ϕ2), where ◦ ∈ {∧,∨}

snf(◦ϕ) = ◦ϕ where ◦ ∈ {X,Y, X̃,Z};
snf(ϕ1 U ϕ2) = snf(ϕ2)∨ (snf(ϕ1)∧ X(ϕ1 U ϕ2));
snf(ϕ1 R ϕ2) = snf(ϕ2)∧ (snf(ϕ1)∨ X̃(ϕ1 R ϕ2)).
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Capturing FOLTL

Definition (Closure)

The closure of a FOLTL sentence ϕ is the set C(ϕ) defined as follows:
Xϕ ∈ C(ϕ);
ψ ∈ C(ϕ) for any subformula ψ of ϕ (including itself);
for any ϕ1 U ϕ2 ∈ C(ϕ) we have X(ϕ1 U ϕ2) ∈ C(ϕ);
for any ϕ1 R ϕ2 ∈ C(ϕ) we have X̃(ϕ1 R ϕ2) ∈ C(ϕ).
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Capturing FOLTL

We also define the following subsets of the closure:

XS = {xsψ | Xψ ∈ C(ϕ)}

X̃S = {wsψ | X̃ψ ∈ C(ϕ)}

where xsψ and wsψ are predicates of the arity n corresponding to the number of free first-order
variables in ψ.
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Capturing FOLTL

Let ϕ be a FOLTL sentence. The automaton of ϕ is A(ϕ) = ⟨Σ, Γ ,ϕ0,ϕT ,ϕF ⟩ where:

the state signature is Γ = XS ∪ X̃S;
the initial and final conditions are:

ϕ0 ≡ xsϕ

ϕF ≡
∧

wsψ∈X̃S

∀x .wsψ(x)∧
∧

xsψ∈XS

∀x .¬xsψ(x)

the transition relation is:

ϕT ≡
∧

sψ∈XS∪X̃S

∀x .[sψ(x)↔ snf ′S(ψ(x))]
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Checking (non-)emptiness

Of course checking emptiness of first-order automata is undecidable.

However, we can state a semi-algorithm for non-emptiness with some assumptions.
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Checking (non-)emptiness

For k > 0, let:

JAKFk ≡ ϕ0
0 ∧

k−1∧
i=0

ϕk
T ∧ ϕk

F

1: procedure NonEmpty(A)
2: k ← 0
3: while true do
4: if JAKFk is satisfiable then
5: return not empty
6: end if
7: k ← k + 1
8: end while
9: end procedure
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Decidable fragments

Recall the result from the literature we cited before.

For a fragment F such that:
the underlying FO fragment is decidable; and
temporal formulas are monodic;

only one free variable inside temporal operators;

constants in the signature are considered rigid;
then FOLTL(F ) is decidable [HWZ00]
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Decidable fragments

Can we recover this result from first-order automata? Yes.
if we follow the encoding we notice that monodic FOLTL sentences translate into
automata with monadic state signature Γ ;
monadic predicates are easier to deal with (e.g., monadic FO is decidable);
we can translate a monadic Γ into a Γ containing only propositions;
emptyness for this kind of automata is decidable (they are almost finite-state).
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CONCLUSIONS
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First-order automata in practice

Our satisfiability checking tool BLACK is currently being refactored to support full FOLTL
through first-order automata.

experimental results soon, maybe another iFM2 talk?
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Better algorithms

Can we go beyond the simple unraveling semi-algorithm shown before?

For better practical results we need more theory.

Interesting paths we are exploring:
fixpoint computation based on second-order quantifier elimination [GSS08];
encoding into constrained Horn clauses [GB19];
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What we have not seen today

We can add past operators to FOLTL.
if we start from pure-past FOLTL sentences, we directly obtain deterministic first-order
automata;
this happens with pure-past LTL as well and is crucial for reactive synthesis;
2EXPTIME for LTL, EXPTIME for pure-past LTL, because of this fact;
can this help with reactive synthesis for FOLTL specifications?
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Conclusions

We want first-order temporal logics to become practical tools for infinite-state specification
and verification.

long way ahead;
little steps already done;
first-order automata as a reasoning and algorithmic tool;
many theoretical and algorithmic developments missing yet.

Th
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Que
sti

on
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