A GENTLE INTRODUCTION TO EPISTEMIC PLANNING FOUNDATIONS AND CHALLENGES

Alessandro Burigana
Free University of Bozen-Bolzano

February 16th, 2024
Department of Mathematics, Computer Science and Physics

University of Udine

A Picture from the Top

Epistemic Planning is the enrichment of classical automated planning, where the notions of knowledge and belief are introduced.

A Picture from the Top

Epistemic Planning is the enrichment of classical automated planning, where the notions of knowledge and belief are introduced.

Epistemic

- When does an agent knows or believe something?
- How do we represent the knowledge/ beliefs of multiple agents?

A Picture from the Top

Epistemic Planning is the enrichment of classical automated planning, where the notions of knowledge and belief are introduced.

Epistemic

- When does an agent knows or believe something?
- How do we represent the knowledge/ beliefs of multiple agents?

Planning

■ How do we represent actions that change what agents know or believe?

- How do such actions change the current knowledge/beliefs of the agents?

A Picture from the Top

Epistemic Planning is the enrichment of classical automated planning, where the notions of knowledge and belief are introduced.

Epistemic

- When does an agent knows or believe something?
- How do we represent the knowledge/ beliefs of multiple agents?

\Downarrow
Epistemic Logic

Planning

- How do we represent actions that change what agents know or believe?
- How do such actions change the current knowledge/beliefs of the agents?

Dynamic Epistemic Logic

A (SLIGHTLY) PHILOSOPHICAL INTRODUCTION

To Know or to Believe? . . .

What does it mean to believe that something is the case?

To Know or to Believe? . . .

What does it mean to believe that something is the case?

Belief

Belief is a propositional attitude that something is true.
\rightarrow Mental state held by an agent or organism toward a proposition.

To Know or to Believe? . . .

What does it mean to believe that something is the case?

Belief

Belief is a propositional attitude that something is true.
\rightarrow Mental state held by an agent or organism toward a proposition.

And what does it mean to know that something is the case?

To Know or to Believe? . . .

What does it mean to believe that something is the case?

Belief

Belief is a propositional attitude that something is true.
\rightarrow Mental state held by an agent or organism toward a proposition.

And what does it mean to know that something is the case?
The Tripartite Analysis of Knowledge
S knows that p iff
$1 p$ is true;
2 S believes that p; and
${ }_{3} S$ is justified in believing that p.

To Know or to Believe? . . .

What does it mean to believe that something is the case?

Belief

Belief is a propositional attitude that something is true.
\rightarrow Mental state held by an agent or organism toward a proposition.

And what does it mean to know that something is the case?
The Tripartite Analysis of Knowledge
S knows that p iff
$1 p$ is true;
$\boxed{2}$ believes that p; and $\quad \Rightarrow$ Justified True Belief (JTB)
${ }_{3} S$ is justified in believing that p.

Is Justified True Belief actually Knowledge?

John is standing outside a field and, within it, he sees what looks exactly like a sheep.
\rightarrow Does John know that there is a sheep if the field?
Let's analyse the situation:
1 John sure believes that a sheep if the field.
$[2$ John is also justified in believing so: he clearly sees it!
3 But is it true that there is a sheep in the field?

Is Justified True Belief actually Knowledge?

John is standing outside a field and, within it, he sees what looks exactly like a sheep.
\rightarrow Does John know that there is a sheep if the field?
Let's analyse the situation:
1 John sure believes that a sheep if the field.
$[2$ John is also justified in believing so: he clearly sees it!
3 But is it true that there is a sheep in the field?
What John does not realize is that what he sees is actually a dog, disguised as a sheep.
\rightarrow Can we now say that now John knows that there is a sheep if the field?

Is Justified True Belief actually Knowledge?

John is standing outside a field and, within it, he sees what looks exactly like a sheep.
\rightarrow Does John know that there is a sheep if the field?
Let's analyse the situation:
1 John sure believes that a sheep if the field.
$[2$ John is also justified in believing so: he clearly sees it!
3 But is it true that there is a sheep in the field?
What John does not realize is that what he sees is actually a dog, disguised as a sheep.
\rightarrow Can we now say that now John knows that there is a sheep if the field?
Moreover, there is actually a sheep behind the hill in the middle of the field.
\rightarrow What can we say now?

EPISTEMIC LOGIC

Syntax

Let \mathcal{P} be a finite set of propositional atoms and $\mathcal{A} \mathcal{G}=\{1, \ldots, n\}$ a finite set of agents. The language $\mathcal{L}_{\mathcal{P}, \mathcal{A} \mathcal{S}}$ of Epistemic Logic is given by the BNF:

Definition (Language of Epistemic Logic)

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi \mid \square_{i} \varphi,
$$

\rightarrow Operator \square_{i} : depending on the context, describes what agent i knows or believes.
\rightarrow Dual operator \diamond_{i} : describes what agent i considers to be possible or compatible.

Semantics

An epistemic state represents both factual information and what agents know/believe.
Definition (Epistemic Model)
An epistemic model is a triple $M=(W, R, V)$, where:

Semantics

An epistemic state represents both factual information and what agents know/believe.
Definition (Epistemic Model)
An epistemic model is a triple $M=(W, R, V)$, where:

- $W \neq \varnothing$ is a finite set of possible worlds;

Example

- w_{3}

Semantics

An epistemic state represents both factual information and what agents know/believe.

Definition (Epistemic Model)

An epistemic model is a triple $M=(W, R, V)$, where:

- $W \neq \varnothing$ is a finite set of possible worlds;
- $R: A G \rightarrow 2^{W \times W}$ assigns to each agent i an accessibility relation R_{i};

Example

Semantics

An epistemic state represents both factual information and what agents know/believe.

Definition (Epistemic Model)

An epistemic model is a triple $M=(W, R, V)$, where:

- $W \neq \varnothing$ is a finite set of possible worlds;
- $R: A G \rightarrow 2^{W \times W}$ assigns to each agent i an accessibility relation R_{i};
- $V: \mathcal{P} \rightarrow 2^{W}$ is a valuation function; and

Example

Semantics

An epistemic state represents both factual information and what agents know/believe.

Definition (Epistemic Model)

An epistemic model is a triple $M=(W, R, V)$, where:

- $W \neq \varnothing$ is a finite set of possible worlds;
- $R: \mathcal{A} G \rightarrow 2^{W \times W}$ assigns to each agent i an accessibility relation R_{i};
- $V: \mathcal{P} \rightarrow 2^{W}$ is a valuation function; and

Definition (Epistemic State)

An epistemic state is a pair $\left(M, W_{d}\right)$ s.t. $W_{d} \subseteq W$ is a non-empty set of designated worlds.

Example

Semantics

Definition (Truth)

Let $s=\left(M, W_{d}\right)$, where $M=(W, R, V)$, be an epistemic state and let $w \in W$:

$(M, w) \models p$	iff	$w \in V(p)$
$(M, w) \models \neg \varphi$	iff	$(M, w) \not \models \varphi$
$(M, w) \models \varphi \wedge \psi$	iff	$(M, w) \models \varphi$ and $(M, w) \models \psi$
$(M, w) \models \square_{i} \varphi$	iff	$\forall v$ if $w R_{i} v$ then $(M, v) \models \varphi$

Moreover, $\left(M, W_{d}\right) \models \varphi$ iff $\forall w$ if $w \in W_{d}$ then $(M, w) \models \varphi$.

Example

> ■ $\square_{\text {AnneSunny }}$
> - $\square_{\text {Bob }}$ rainy
> - $\square_{\text {Anne }} \square_{\text {Bob }}$ rainy
> - $\diamond_{\text {Bob }} \square_{\text {Anne }}$ rainy

That is the Question

How can epistemic states represent the knowledge and the beliefs of agents?
\rightarrow We model them via axioms.

How can epistemic states represent the knowledge and the beliefs of agents?
\rightarrow We model them via axioms.

	Axiom	Frame Property	Knowledge	Belief
\mathbf{K}	$\square_{i}(\varphi \rightarrow \psi) \rightarrow\left(\square_{i} \varphi \rightarrow \square_{i} \psi\right)$	-	\checkmark	\checkmark
T	$\square_{i} \varphi \rightarrow \varphi$	Reflexivity	\checkmark	
\mathbf{D}	$\square_{i} \varphi \rightarrow \diamond_{i} \varphi$	Seriality	\checkmark	\checkmark
4	$\square_{i} \varphi \rightarrow \square_{i} \square_{i} \varphi$	Transitivity	\checkmark	\checkmark
$\mathbf{5}$	$\neg \square_{i} \varphi \rightarrow \square_{i} \neg \square_{i} \varphi$	Euclideanness	\checkmark	\checkmark

An epistemic state represents:

- Knowledge, when it satisfies axioms K, T, $\mathbf{4}$ and $\mathbf{5} \Rightarrow$ Logic $\mathbf{S 5}_{n}$
- Belief, when it satisfies axioms K, D, $\mathbf{4}$ and $\mathbf{5} \Rightarrow$ Logic KD45 ${ }_{n}$

DYNAMIC EPISTEMIC LOGIC

Actions in Classical Planning

Classical actions are:
1 Propositional
2 Single-agent
3 Fully Observable
4 Deterministic

Actions in Classical Planning

Example (Blocks World)

Classical actions are:
1 Propositional
2 Single-agent
3 Fully Observable
4 Deterministic

Actions in Classical Planning

Example (Blocks World)

Classical actions are:
1 Propositional
2 Single-agent
3 Fully Observable
4 Deterministic

Action move (b, x, y) :

- $\operatorname{Pre}(\operatorname{move}(b, x, y))=\operatorname{On}(b, x) \wedge C l e a r(b) \wedge C l e a r(y)$
- $\operatorname{Eff}(\operatorname{move}(b, x, y))=$
$\{O n(b, y), \operatorname{Clear}(x), \neg \operatorname{On}(b, x), \neg \operatorname{Clear}(y)\} \triangleright \top$

Actions in Classical Planning

Example (Blocks World)

Classical actions are:
1 Propositional
2 Single-agent
3 Fully Observable
4 Deterministic

Action move (b, x, y) :

- $\operatorname{Pre}(\operatorname{move}(b, x, y))=\operatorname{On}(b, x) \wedge C l e a r(b) \wedge C l e a r(y)$
- $\operatorname{Eff}(\operatorname{move}(b, x, y))=$
$\{\operatorname{On}(b, y)$, Clear $(x), \neg$ On $(b, x), \neg \operatorname{Clear}(y)\} \triangleright \top$
\rightarrow We now incrementally move from classical actions to epistemic actions.

Epistemic Blocks World

Example (Epistemic Blocks World)

- Agent a: only sees from above.

Epistemic Blocks World

Example (Multi-Agent Epistemic Blocks World)

- Agent a: only sees from above.
- Agent $/$: only sees from a top left position.

Epistemic Blocks World

Example (Multi-Agent Epistemic Blocks World)

- Agent a: only sees from above.
- Agent r : only sees from a top right position.

Epistemic Blocks World

Example (Multi-Agent Epistemic Blocks World)

- Agent a: only sees from above.
- Agent /: only sees from a top left position.
- Agent r : only sees from a top right position.

Epistemic Actions

Definition (Event Model)

An event model is a quadruple $\mathcal{E}=(E, Q$, pre, post $)$, where:

- $E \neq \varnothing$ is a finite set of events;
- $Q: \mathcal{A} G \rightarrow 2^{E \times E}$ assigns to each agent i an accessibility relation Q_{i};

Intuitively:

- An event can be seen as a classical action.
- Accessibility relations specify the perspectives of agents on which events take place.

Epistemic Actions

Definition (Event Model)

An event model is a quadruple $\mathcal{E}=(E, Q$, pre, post $)$, where:

- $E \neq \varnothing$ is a finite set of events;
- $Q: \mathcal{A} G \rightarrow 2^{E \times E}$ assigns to each agent i an accessibility relation Q_{i};
- pre : $E \rightarrow \mathcal{L}_{\mathcal{P}, \mathcal{A G}}$ assigns to each event a precondition;
- post : $E \rightarrow\left(\mathcal{P} \rightarrow \mathcal{L}_{\mathcal{P}, \mathcal{A} \mathcal{S}}\right)$ assigns to each event and atom a postcondition.

Intuitively:

- An event can be seen as a classical action, each with its own pre- and postconditions.
- Accessibility relations specify the perspectives of agents on which events take place.

Epistemic Actions

Definition (Event Model)

An event model is a quadruple $\mathcal{E}=(E, Q$, pre, post $)$, where:

- $E \neq \varnothing$ is a finite set of events;
- $Q: \mathcal{A} G \rightarrow 2^{E \times E}$ assigns to each agent i an accessibility relation Q_{i};
- pre : $E \rightarrow \mathcal{L}_{\mathcal{P}, \mathcal{A G}}$ assigns to each event a precondition;
- post : $E \rightarrow\left(\mathcal{P} \rightarrow \mathcal{L}_{\mathcal{P}, \mathcal{A}}\right)$ assigns to each event and atom a postcondition.

Intuitively:

- An event can be seen as a classical action, each with its own pre- and postconditions.
- Accessibility relations specify the perspectives of agents on which events take place.

Definition (Epistemic Action)

An epistemic action is a pair $\left(\mathcal{E}, E_{d}\right)$, s.t. $E_{d} \subseteq E$ is a non-empty set of designated events.

Product Update

An action $\left(\mathcal{E}, E_{d}\right)$ is applicable is an epistemic state $\left(M, W_{d}\right)$ iff for each designated world $w \in W_{d}$ there exists a designated event $e \in E_{d}$ such that $(M, w) \models$ pre(e).

Definition (Product Update)

Given $\left(M, W_{d}\right)$ and $\left(\mathcal{E}, E_{d}\right)$, where $M=(W, R, V)$ and $\varepsilon=(E, Q$, pre, post $)$, their product update $\left(M, W_{d}\right) \otimes\left(\mathcal{E}, E_{d}\right)$ is the epistemic state $\left(\left(W^{\prime}, R^{\prime}, V^{\prime}\right), W_{d}^{\prime}\right)$ where:

Product Update

An action $\left(\mathcal{E}, E_{d}\right)$ is applicable is an epistemic state $\left(M, W_{d}\right)$ iff for each designated world $w \in W_{d}$ there exists a designated event $e \in E_{d}$ such that $(M, w) \models$ pre(e).

Definition (Product Update)

Given $\left(M, W_{d}\right)$ and $\left(\mathcal{E}, E_{d}\right)$, where $M=(W, R, V)$ and $\varepsilon=(E, Q$, pre, post $)$, their product update $\left(M, W_{d}\right) \otimes\left(\varepsilon, E_{d}\right)$ is the epistemic state $\left(\left(W^{\prime}, R^{\prime}, V^{\prime}\right), W_{d}^{\prime}\right)$ where:

- $W^{\prime}=\{(w, e) \in W \times E \mid(M, w) \models$ pre $(e)\}$;

Product Update

An action $\left(\mathcal{E}, E_{d}\right)$ is applicable is an epistemic state $\left(M, W_{d}\right)$ iff for each designated world $w \in W_{d}$ there exists a designated event $e \in E_{d}$ such that $(M, w) \models$ pre(e).

Definition (Product Update)

Given $\left(M, W_{d}\right)$ and $\left(\varepsilon, E_{d}\right)$, where $M=(W, R, V)$ and $\varepsilon=(E, Q$, pre, post $)$, their product update $\left(M, W_{d}\right) \otimes\left(\varepsilon, E_{d}\right)$ is the epistemic state $\left(\left(W^{\prime}, R^{\prime}, V^{\prime}\right), W_{d}^{\prime}\right)$ where:

- $W^{\prime}=\{(w, e) \in W \times E \mid(M, w) \models$ pre $(e)\}$;
- $R_{i}^{\prime}=\left\{((w, e),(v, f)) \in W^{\prime} \times W^{\prime} \mid w R_{i} v\right.$ and $\left.e Q_{i} f\right\}$;

Product Update

An action $\left(\mathcal{E}, E_{d}\right)$ is applicable is an epistemic state $\left(M, W_{d}\right)$ iff for each designated world $w \in W_{d}$ there exists a designated event $e \in E_{d}$ such that $(M, w) \models$ pre (e).

Definition (Product Update)

Given $\left(M, W_{d}\right)$ and $\left(\varepsilon, E_{d}\right)$, where $M=(W, R, V)$ and $\varepsilon=(E, Q$, pre, post $)$, their product update $\left(M, W_{d}\right) \otimes\left(\varepsilon, E_{d}\right)$ is the epistemic state $\left(\left(W^{\prime}, R^{\prime}, V^{\prime}\right), W_{d}^{\prime}\right)$ where:

- $W^{\prime}=\{(w, e) \in W \times E \mid(M, w) \models$ pre $(e)\}$;
- $R_{i}^{\prime}=\left\{((w, e),(v, f)) \in W^{\prime} \times W^{\prime} \mid w R_{i} v\right.$ and $\left.e Q_{i} f\right\} ;$
- $V^{\prime}(p)=\left\{(w, e) \in W^{\prime} \mid(M, w) \models \operatorname{post}(e)(p)\right\}$; and

Product Update

An action $\left(\mathcal{E}, E_{d}\right)$ is applicable is an epistemic state $\left(M, W_{d}\right)$ iff for each designated world $w \in W_{d}$ there exists a designated event $e \in E_{d}$ such that $(M, w) \models$ pre (e).

Definition (Product Update)

Given $\left(M, W_{d}\right)$ and $\left(\varepsilon, E_{d}\right)$, where $M=(W, R, V)$ and $\varepsilon=(E, Q$, pre, post $)$, their product update $\left(M, W_{d}\right) \otimes\left(\varepsilon, E_{d}\right)$ is the epistemic state $\left(\left(W^{\prime}, R^{\prime}, V^{\prime}\right), W_{d}^{\prime}\right)$ where:

- $W^{\prime}=\{(w, e) \in W \times E \mid(M, w) \models$ pre $(e)\} ;$
- $R_{i}^{\prime}=\left\{((w, e),(v, f)) \in W^{\prime} \times W^{\prime} \mid w R_{i} v\right.$ and $\left.e Q_{i} f\right\} ;$
- $V^{\prime}(p)=\left\{(w, e) \in W^{\prime} \mid(M, w) \models \operatorname{post}(e)(p)\right\}$; and
- $W_{d}^{\prime}=\left\{(w, e) \in W^{\prime} \mid w \in W_{d}\right.$ and $\left.e \in E_{d}\right\}$.

Public Announcements

Example

Public Announcement

Agent r tells everybody that he knows that $\neg \operatorname{On}\left(b_{1}, s_{3}\right)$.

Public Announcements

Example

Public Announcement

Agent r tells everybody that he knows that $\neg \operatorname{On}\left(b_{1}, s_{3}\right)$.

Definition (Product Update)

- $W^{\prime}=\{(w, e) \in W \times E \mid(M, w) \models$ pre $(e)\} ;$
- $R_{i}^{\prime}=\left\{((w, e),(v, f)) \in W^{\prime} \times W^{\prime} \mid w R_{i} v\right.$ and $\left.e Q_{i} f\right\} ;$
- $V^{\prime}(p)=\left\{(w, e) \in W^{\prime} \mid(M, w) \models \operatorname{post}(e)(p)\right\}$; and
- $W_{d}^{\prime}=\left\{(w, e) \in W^{\prime} \mid w \in W_{d}\right.$ and $\left.e \in E_{d}\right\}$.

Public Announcements

Example

Public Announcement

Agent r tells everybody that he knows that $\neg \operatorname{On}\left(b_{1}, s_{3}\right)$.

Definition (Product Update)

- $W^{\prime}=\{(w, e) \in W \times E \mid(M, w) \models$ pre $(e)\} ;$
- $R_{i}^{\prime}=\left\{((w, e),(v, f)) \in W^{\prime} \times W^{\prime} \mid w R_{i} v\right.$ and $\left.e Q_{i} f\right\}$;
- $V^{\prime}(p)=\left\{(w, e) \in W^{\prime} \mid(M, w) \models \operatorname{post}(e)(p)\right\}$; and
- $W_{d}^{\prime}=\left\{(w, e) \in W^{\prime} \mid w \in W_{d}\right.$ and $\left.e \in E_{d}\right\}$.

Public Announcements

Example

Public Announcement

Agent r tells everybody that he knows that $\neg \operatorname{On}\left(b_{1}, s_{3}\right)$.

Definition (Product Update)

- $W^{\prime}=\{(w, e) \in W \times E \mid(M, w) \models$ pre $(e)\} ;$
- $R_{i}^{\prime}=\left\{((w, e),(v, f)) \in W^{\prime} \times W^{\prime} \mid w R_{i} v\right.$ and $\left.e Q f\right\} ;$
- $V^{\prime}(p)=\left\{(w, e) \in W^{\prime} \mid(M, w) \models \operatorname{post}(e)(p)\right\}$; and
- $W_{d}^{\prime}=\left\{(w, e) \in W^{\prime} \mid w \in W_{d}\right.$ and $\left.e \in E_{d}\right\}$.

Semi-Private Sensing Action

Example

Semi-Private Sensing Action

Agent r peeks under block b_{2} while agents a and observe him. Specifically:

- Agents r and I observe what is actually being sensed.
- Agent a can not directly observe what agent r is seeing.

$e_{1}: \operatorname{On}\left(b_{2}, b_{1}\right) \quad e_{2}: \neg \operatorname{On}\left(b_{2}, b_{1}\right)$
Trivial postconditions are omitted.

Semi-Private Sensing Action

Example

Semi-Private Sensing Action

Agent r peeks under block b_{2} while agents a and observe him. Specifically:

- Agents r and I observe what is actually being sensed.
- Agent a can not directly observe what agent r is seeing.

$e_{1}: \operatorname{On}\left(b_{2}, b_{1}\right) \quad e_{2}: \neg \operatorname{On}\left(b_{2}, b_{1}\right)$

Trivial postconditions are omitted.
Definition (Product Update)

- $W^{\prime}=\{(w, e) \in W \times E \mid(M, w) \models p r e(e)\} ;$
- $R_{i}^{\prime}=\left\{((w, e),(v, f)) \in W^{\prime} \times W^{\prime} \mid w R v\right.$ and $\left.e Q f\right\} ;$
- $V^{\prime}(p)=\left\{(w, e) \in W^{\prime} \mid(M, w) \models \operatorname{post}(e)(p)\right\}$; and
- $W_{d}^{\prime}=\left\{(w, e) \in W^{\prime} \mid w \in W_{d}\right.$ and $\left.e \in E_{d}\right\}$.

Semi-Private Sensing Action

Example

Semi-Private Sensing Action

Agent r peeks under block b_{2} while agents a and observe him. Specifically:

- Agents r and I observe what is actually being sensed.
- Agent a can not directly observe what agent r is seeing.

$e_{1}: \operatorname{On}\left(b_{2}, b_{1}\right) \quad e_{2}: \neg \operatorname{On}\left(b_{2}, b_{1}\right)$

Trivial postconditions are omitted.
Definition (Product Update)

- $W^{\prime}=\{(w, e) \in W \times E \mid(M, w) \models p r e(e)\} ;$
- $R_{i}^{\prime}=\left\{((w, e),(v, f)) \in W^{\prime} \times W^{\prime} \mid w R v\right.$ and $\left.e Q f\right\} ;$
- $V^{\prime}(p)=\left\{(w, e) \in W^{\prime} \mid(M, w) \models \operatorname{post}(e)(p)\right\}$; and
- $W_{d}^{\prime}=\left\{(w, e) \in W^{\prime} \mid w \in W_{d}\right.$ and $\left.e \in E_{d}\right\}$.

Semi-Private Sensing Action

Example

Semi-Private Sensing Action

Agent r peeks under block b_{2} while agents a and observe him. Specifically:

- Agents r and I observe what is actually being sensed.
- Agent a can not directly observe what agent r is seeing.

$e_{1}: \operatorname{On}\left(b_{2}, b_{1}\right) \quad e_{2}: \neg \operatorname{On}\left(b_{2}, b_{1}\right)$

Trivial postconditions are omitted.

Definition (Product Update)

- $W^{\prime}=\{(w, e) \in W \times E \mid(M, w) \models p r e(e)\} ;$
- $R_{i}^{\prime}=\left\{((w, e),(v, f)) \in W^{\prime} \times W^{\prime} \mid w R v\right.$ and $\left.e Q f\right\} ;$
- $V^{\prime}(p)=\left\{(w, e) \in W^{\prime} \mid(M, w) \models \operatorname{post}(e)(p)\right\}$; and
- $W_{d}^{\prime}=\left\{(w, e) \in W^{\prime} \mid w \in W_{d}\right.$ and $\left.e \in E_{d}\right\}$.

Public Sensing Action

Example

Public Sensing Action

All agents peek under block b_{2}.
\rightarrow Non-deterministic action!

Trivial postconditions are omitted.

Public Sensing Action

Example

Public Sensing Action

All agents peek under block b_{2}.
\rightarrow Non-deterministic action!

$e_{1}: O n\left(b_{2}, b_{1}\right)$

$e_{2}: \neg O n\left(b_{2}, b_{1}\right)$

Trivial postconditions are omitted.

Definition (Product Update)
 Definito (Prodact Update)

- $W^{\prime}=\{(w, e) \in W \times E \mid(M, w) \models p r e(e)\} ;$
- $R_{i}^{\prime}=\left\{((w, e),(v, f)) \in W^{\prime} \times W^{\prime} \mid w R v\right.$ and $\left.e Q_{i} f\right\}$;
- $V^{\prime}(p)=\left\{(w, e) \in W^{\prime} \mid(M, w) \models \operatorname{post}(e)(p)\right\}$; and
- $W_{d}^{\prime}=\left\{(w, e) \in W^{\prime} \mid w \in W_{d}\right.$ and $\left.e \in E_{d}\right\}$.

Public Sensing Action

Example

Public Sensing Action

All agents peek under block b_{2}.
\rightarrow Non-deterministic action!

$e_{1}: O n\left(b_{2}, b_{1}\right)$

$e_{2}: \neg O n\left(b_{2}, b_{1}\right)$

Trivial postconditions are omitted.

Definition (Product Update)

- $W^{\prime}=\{(w, e) \in W \times E \mid(M, w) \models$ pre $(e)\}$;
- $R_{i}^{\prime}=\left\{((w, e),(v, f)) \in W^{\prime} \times W^{\prime} \mid w R v\right.$ and $\left.e Q f\right\} ;$
- $V^{\prime}(p)=\left\{(w, e) \in W^{\prime} \mid(M, w) \models \operatorname{post}(e)(p)\right\}$; and
- $W_{d}^{\prime}=\left\{(w, e) \in W^{\prime} \mid w \in W_{d}\right.$ and $\left.e \in E_{d}\right\}$.

$\left(v_{1}, e_{1}\right)$

$\left(v_{2}, e_{2}\right)$

Public Sensing Action

Example

Public Sensing Action

All agents peek under block b_{2}.
\rightarrow Non-deterministic action!

$e_{1}: O n\left(b_{2}, b_{1}\right)$

$e_{2}: \neg O n\left(b_{2}, b_{1}\right)$

Trivial postconditions are omitted.

Definition (Product Update)

- $W^{\prime}=\{(w, e) \in W \times E \mid(M, w) \models$ pre $(e)\} ;$
- $R_{i}^{\prime}=\left\{((w, e),(v, f)) \in W^{\prime} \times W^{\prime} \mid w R v\right.$ and $\left.e Q f\right\} ;$
- $V^{\prime}(p)=\left\{(w, e) \in W^{\prime} \mid(M, w) \models \operatorname{post}(e)(p)\right\}$; and
- $W_{d}^{\prime}=\left\{(w, e) \in W^{\prime} \mid w \in W_{d}\right.$ and $\left.e \in E_{d}\right\}$.

Private Ontic Actions

Example

Private Ontic Action

Agent I privately moves block b_{2} from b_{1} to b_{3}, where:

- pre $=\operatorname{On}\left(b_{2}, b_{1}\right) \wedge$ Clear $\left(b_{2}\right) \wedge$ Clear $\left(b_{3}\right)$
- $\operatorname{post}\left(e_{1}\right)\left(O n\left(b_{2}, b_{1}\right)\right)=\perp$
- $\operatorname{post}\left(e_{1}\right)\left(O n\left(b_{2}, b_{3}\right)\right)=T$

Private Ontic Actions

Example

Private Ontic Action

Agent I privately moves block b_{2} from b_{1} to b_{3}, where:

- pre $=\operatorname{On}\left(b_{2}, b_{1}\right) \wedge$ Clear $\left(b_{2}\right) \wedge$ Clear $\left(b_{3}\right)$
- $\operatorname{post}\left(e_{1}\right)\left(O n\left(b_{2}, b_{1}\right)\right)=\perp$
- $\operatorname{post}\left(e_{1}\right)\left(O n\left(b_{2}, b_{3}\right)\right)=\top$

Definition (Product Update)

- $W^{\prime}=\{(w, e) \in W \times E \mid(M, w) \models p r e(e)\} ;$
- $R_{i}^{\prime}=\left\{((w, e),(v, f)) \in W^{\prime} \times W^{\prime} \mid w R v\right.$ and $\left.e Q f\right\} ;$
- $V^{\prime}(p)=\left\{(w, e) \in W^{\prime} \mid(M, w) \vDash \operatorname{post}(e)(p)\right\}$; and
- $W_{d}^{\prime}=\left\{(w, e) \in W^{\prime} \mid w \in W_{d}\right.$ and $\left.e \in E_{d}\right\}$.

Private Ontic Actions

Example

Private Ontic Action

Agent I privately moves block b_{2} from b_{1} to b_{3}, where:

- pre $=\operatorname{On}\left(b_{2}, b_{1}\right) \wedge$ Clear $\left(b_{2}\right) \wedge$ Clear $\left(b_{3}\right)$
- $\operatorname{post}\left(e_{1}\right)\left(O n\left(b_{2}, b_{1}\right)\right)=\perp$
- $\operatorname{post}\left(e_{1}\right)\left(O n\left(b_{2}, b_{3}\right)\right)=\top$

Definition (Product Update)

- $W^{\prime}=\{(w, e) \in W \times E \mid(M, w) \models p r e(e)\} ;$
- $R_{i}^{\prime}=\left\{((w, e),(v, f)) \in W^{\prime} \times W^{\prime} \mid w R v\right.$ and $\left.e Q f\right\} ;$

- $V^{\prime}(p)=\left\{(w, e) \in W^{\prime} \mid(M, w) \vDash \operatorname{post}(e)(p)\right\}$; and
- $W_{d}^{\prime}=\left\{(w, e) \in W^{\prime} \mid w \in W_{d}\right.$ and $\left.e \in E_{d}\right\}$.

Private Ontic Actions

Example

Private Ontic Action

Agent I privately moves block b_{2} from b_{1} to b_{3}, where:

- pre $=\operatorname{On}\left(b_{2}, b_{1}\right) \wedge$ Clear $\left(b_{2}\right) \wedge$ Clear $\left(b_{3}\right)$
- $\operatorname{post}\left(e_{1}\right)\left(O n\left(b_{2}, b_{1}\right)\right)=\perp$
- $\operatorname{post}\left(e_{1}\right)\left(O n\left(b_{2}, b_{3}\right)\right)=\top$

Definition (Product Update)

- $W^{\prime}=\{(w, e) \in W \times E \mid(M, w) \models p r e(e)\} ;$
- $R_{i}^{\prime}=\left\{((w, e),(v, f)) \in W^{\prime} \times W^{\prime} \mid w R v\right.$ and $\left.e Q f\right\} ;$

$\left(v_{2}, e_{2}\right)$

- $V^{\prime}(p)=\left\{(w, e) \in W^{\prime} \mid(M, w) \vDash \operatorname{post}(e)(p)\right\}$; and
- $W_{d}^{\prime}=\left\{(w, e) \in W^{\prime} \mid w \in W_{d}\right.$ and $\left.e \in E_{d}\right\}$.

Private Ontic Actions

Example

Private Ontic Action

Agent I privately moves block b_{2} from b_{1} to b_{3}, where:

- pre $=\operatorname{On}\left(b_{2}, b_{1}\right) \wedge$ Clear $\left(b_{2}\right) \wedge$ Clear $\left(b_{3}\right)$
- $\operatorname{post}\left(e_{1}\right)\left(O n\left(b_{2}, b_{1}\right)\right)=\perp$
- $\operatorname{post}\left(e_{1}\right)\left(O n\left(b_{2}, b_{3}\right)\right)=\top$

Definition (Product Update)

- $W^{\prime}=\{(w, e) \in W \times E \mid(M, w) \models p r e(e)\} ;$
- $R_{i}^{\prime}=\left\{((w, e),(v, f)) \in W^{\prime} \times W^{\prime} \mid w R v\right.$ and $\left.e Q f\right\} ;$

$\left(v_{2}, e_{2}\right)$

- $V^{\prime}(p)=\left\{(w, e) \in W^{\prime} \mid(M, w) \vDash \operatorname{post}(e)(p)\right\}$; and
- $W_{d}^{\prime}=\left\{(w, e) \in W^{\prime} \mid w \in W_{d}\right.$ and $\left.e \in E_{d}\right\}$.

Private Ontic Actions

Example

Private Ontic Action

Agent I privately moves block b_{2} from b_{1} to b_{3}, where:

- pre $=\operatorname{On}\left(b_{2}, b_{1}\right) \wedge$ Clear $\left(b_{2}\right) \wedge$ Clear $\left(b_{3}\right)$
- $\operatorname{post}\left(e_{1}\right)\left(O n\left(b_{2}, b_{1}\right)\right)=\perp$
- $\operatorname{post}\left(e_{1}\right)\left(O n\left(b_{2}, b_{3}\right)\right)=\top$

Definition (Product Update)

- $W^{\prime}=\{(w, e) \in W \times E \mid(M, w) \models$ pre $(e)\} ;$
- $R_{i}^{\prime}=\left\{((w, e),(v, f)) \in W^{\prime} \times W^{\prime} \mid w R_{i} v\right.$ and $\left.e Q_{i} f\right\}$;

- $V^{\prime}(p)=\left\{(w, e) \in W^{\prime} \mid(M, w) \models \operatorname{post}(e)(p)\right\}$; and
- $W_{d}^{\prime}=\left\{(w, e) \in W^{\prime} \mid w \in W_{d}\right.$ and $\left.e \in E_{d}\right\}$.

Classical Vs. Epistemic Actions

To summarize:
Classical actions are:
1 Propositional
2 Single-agent
3 Fully Observable
4 Deterministic

Epistemic actions are:
1 Modal
2. Multi-agent

3 Partially Observable
4 Non-deterministic

Moreover, epistemic actions model both factual and higher-order knowledge change.
\rightarrow There are no restrictions on the reasoning power of agents! (More on this later)

Epistemic Planning Task

Definition (Planning Task)

An (epistemic) planning task is a triple $T=\left(s_{0}, \mathcal{A}, \varphi_{g}\right)$, where:

- s_{0} is an initial epistemic state;
- \mathcal{A} is a finite set of actions;
- $\varphi_{g} \in \mathcal{L}_{\mathcal{P}, \mathcal{A} G}$ is a goal formula.

Epistemic Planning Task

Definition (Planning Task)

An (epistemic) planning task is a triple $T=\left(s_{0}, \mathcal{A}, \varphi_{g}\right)$, where:

- s_{0} is an initial epistemic state;
- \mathcal{A} is a finite set of actions;
- $\varphi_{g} \in \mathcal{L}_{\mathcal{P}, \mathcal{A} \mathcal{S}}$ is a goal formula.

Definition (Solution)

A solution to a planning task $\left(s_{0}, \mathcal{A}, \varphi_{g}\right)$ is a finite sequence $\alpha_{1}, \ldots, \alpha_{m}$ of actions of \mathcal{A} s.t.: 1 For each $1 \leqslant k \leqslant m, \alpha_{k}$ is applicable in $s_{0} \otimes \alpha_{1} \otimes \cdots \otimes \alpha_{k-1}$, and (2) $s_{0} \otimes \alpha_{1} \otimes \cdots \otimes \alpha_{m} \models \varphi_{g}$.

Epistemic Plan Existence Problem

Definition (Plan Existence Problem)

Let $n \geqslant 1$ and \mathcal{T} be a class of planning tasks. PlanEx (\mathcal{T}, n) is the following decision problem:
"Given a planning task $T=\left(s_{0}, \mathcal{A}, \varphi_{g}\right) \in \mathcal{T}$, where $|\mathcal{A} \mathcal{G}|=n$, does T have a solution?"

Theorem (Bolander and Andersen [BA11])

Let \mathcal{T} be the class of all epistemic planning tasks and let $n \geqslant 1$. Then, $\operatorname{PlanEx}(\mathcal{T}, n)$ is undecidable.

CURRENT CHALLENGES

Decidable Fragments

A great deal of effort has been spent over the past decade to devise decidable fragments of the epistemic plan existence problem.

Let $\mathcal{T}(a, b)$ denote the class of epistemic planning tasks where:

- a is the maximum modal depth of preconditions, and
- b is the maximum modal depth of postconditions. We indicate with $b=-1$ the absence of postconditions.

PlanEx $(\mathcal{T}(0,-1), n)$	PSPACE-complete [CMS16]
PlanEx(T) $(1,-1), n)$	Unknown [CMS16]
PlanEx(T) $(2,-1), n)$	UNDECIDABLE [CMS16]
PlanEx(T) $(0,0), n)$	DECIDABLE [YWL13; AMP14]
PlanEx $(\mathcal{T}(1,0), n)$	DECIDABLE [Bol+20]

Decidable Fragments (cont.)

Others have focused on considering the plan existence problem of tasks under well-known modal logics (Aucher and Bolander [AB13]).

Logic	Single-agent	Multi-agent
K	UNDECIDABLE	UNDECIDABLE
KT		
K4		
K45	DECIDABLE	
S4	UNDECIDABLE	
S5	DECIDABLE	

A Semantic Approach

What if we combined the two previous approaches together?
\rightarrow We can limit the reasoning power of agents via modal axioms.

A Semantic Approach

What if we combined the two previous approaches together?
\rightarrow We can limit the reasoning power of agents via modal axioms.

Knowledge Commutativity

$$
\text { C } \square_{i} \square_{j} \varphi \rightarrow \square_{j} \square_{i} \varphi
$$

We call $\mathrm{C}-\mathrm{S} 5_{n}$ the logic $\mathrm{S} 5_{n}$ augmented with axiom \mathbf{C}.

A Semantic Approach

What if we combined the two previous approaches together?
\rightarrow We can limit the reasoning power of agents via modal axioms.

Knowledge Commutativity

$$
\text { C } \square_{i} \square_{j} \varphi \rightarrow \square_{j} \square_{i} \varphi
$$

We call $\mathrm{C}-\mathrm{S} 5_{n}$ the logic $\mathrm{S} 5_{n}$ augmented with axiom \mathbf{C}.
Lemma (Burigana et al. [Bur+23])
Let $\left(M, W_{d}\right)$ be a bisimulation-contracted C - $S 5_{n}$-state, with $M=(W, R, V)$. Then, $|W|$ is bounded in n and $|\mathcal{P}|$.

Theorem (Burigana et al. [Bur+23])

The plan existence problem in $\mathrm{C}-\mathrm{S5} 5_{n}$ is decidable.

Generalizing Commutativity

Let $b>1$ be a fixed integer constant:

b-Commutativity

$$
\mathbf{C}^{b} \quad\left(\square_{i} \square_{j}\right)^{b} \varphi \rightarrow\left(\square_{j} \square_{i}\right)^{b} \varphi
$$

Let $1<\ell \leqslant n$ be a fixed integer constant, let $\left\langle i_{1}, \ldots, i_{\ell}\right\rangle$ be a repetition-free sequence of agents and let π be any of its permutations:

Weak Commutativity

$$
\mathbf{w} \mathbf{C}_{\ell} \quad \square_{i_{1}} \ldots \square_{i_{\ell}} \varphi \rightarrow \square_{\pi_{i_{1}}} \ldots \square_{\pi_{i_{\ell}}} \varphi
$$

- We call $\mathbf{C}^{b}-\mathbf{S} 5_{n}$ the logic $S 5_{n}$ augmented with axiom \mathbf{C}^{b}.
- We call $\mathbf{w} \mathbf{C}_{\ell}-\mathbf{S} 5_{n}$ the logic $S 5_{n}$ augmented with axiom $\mathbf{w} \mathbf{C}_{\ell}$ (for all π).

Benefits of Semantic Approach

We obtain positive results:

Logic	Decidability
$\mathrm{K}_{n}, \mathrm{~K}_{n}, \mathrm{KT} \mathrm{n}_{n}, \mathrm{~K} 4_{n}, \mathrm{~K} 45_{n}, \mathrm{~S} 4_{n}, \mathrm{~S} 5_{n}$	UNDECIDABLE [AB13]
$\mathrm{C}^{\text {b }}$ - $5_{n}(n>2)$	UNDECIDABLE [Bur+23]
$\mathrm{C}^{\text {b }}$ - 5_{2}	DECIDABLE [Bur+23]
$\mathrm{wC}_{\ell}-\mathrm{S5}_{n}$	
$\mathrm{C}-\mathrm{S5}{ }_{n}$	

- Well-known epistemic planning formalism are captured by $\mathrm{C}-\mathrm{S} 5_{n}$.
- Flexible approach: different axioms can be devised depending on the situation.
- No strong restrictions on modal depth.

Efficient Implementations

Current approaches:

- Compilation of fragments of DEL into classical planning.
- Bisimulation-contraction techniques.
- Ad hoc implementations of fragments of DEL.

Efficient Implementations

Current approaches:

- Compilation of fragments of DEL into classical planning.

■ Bisimulation-contraction techniques.

- Ad hoc implementations of fragments of DEL.

Future directions:
■ Symbolic approaches: SMT encodings, syntactic models.

- Heuristics, heuristics, heuristics.
\rightarrow Currently working on: Epistemic Planning Graph.
- Bounded bisimulation contractions.

Benchmarks for Epistemic Planning

The many fragments of DEL are hard to compare:
\rightarrow Different ad hoc languages (if any) capture only a part of DEL.
\rightarrow Different custom benchmarks.

Benchmarks for Epistemic Planning

The many fragments of DEL are hard to compare:
\rightarrow Different ad hoc languages (if any) capture only a part of DEL.
\rightarrow Different custom benchmarks.
We need a unified language for the entire DEL semantics. This would allow the following:

- Standard language to represent epistemic planning domains.

■ Development of a publicly available and shared set of benchmarks.

- Easier comparison of results.
\rightarrow Better overall progress of efficient techniques.

Benchmarks for Epistemic Planning

The many fragments of DEL are hard to compare:
\rightarrow Different ad hoc languages (if any) capture only a part of DEL.
\rightarrow Different custom benchmarks.
We need a unified language for the entire DEL semantics. This would allow the following:

- Standard language to represent epistemic planning domains.

■ Development of a publicly available and shared set of benchmarks.

- Easier comparison of results.
\rightarrow Better overall progress of efficient techniques.
Currently working on EPDDL:
\rightarrow Borrows the well-known syntax of PDDL and extends it to capture the whole DEL semantics.

Belief Revision in DEL

Public Announcement

Belief Revision in DEL

Public Announcement

Belief Revision in DEL

Public Announcement

Belief Revision in DEL

Public Announcement

Belief Revision in DEL

Public Announcement

Some axioms might "break" after product update.
\rightarrow The state is no longer serial \rightarrow Axiom \mathbf{D} is not preserved.
\rightarrow The state does not represent what agent a believes.

Belief Revision in DEL

Public Announcement

Some axioms might "break" after product update.
\rightarrow The state is no longer serial \rightarrow Axiom \mathbf{D} is not preserved.
\rightarrow The state does not represent what agent a believes.
How do we fix this?

- Plausibility models: belief of the agent is captured by the most plausible worlds.
\rightarrow We recover a's beliefs by looking at what he considers to be plausible.
- Recovery: prior to public announcements, we do a recovering action that "expands" the agents' beliefs.
- Modifying the product update operator.

Epistemic (outside of) Planning

Epistemic planning is still a relatively recent research area.
\rightarrow Many things still to address.
\rightarrow Has not been exploited in real scenarios.
Different areas would benefit from epistemic planning and reasoning:

- Multi-Agent Systems
\rightarrow Self-driving vehicles
\rightarrow Social commitments
\rightarrow Business Process Management
- Legal reasoning

■ Virtually any scenario involving uncertainty and/or different perspectives

THANK YOU
Questions?

