A GENTLE INTRODUCTION TO EPISTEMIC PLANNING FOUNDATIONS AND CHALLENGES

Alessandro Burigana Free University of Bozen-Bolzano February 16th, 2024 Department of Mathematics, Computer Science and Physics University of Udine

Epistemic

- When does an agent knows or believe something?
- How do we represent the knowledge/ beliefs of multiple agents?

Epistemic

- When does an agent knows or believe something?
- How do we represent the knowledge/ beliefs of multiple agents?

Planning

- How do we represent actions that change what agents know or believe?
- How do such actions change the current knowledge/beliefs of the agents?

Epistemic

- When does an agent knows or believe something?
- How do we represent the knowledge/ beliefs of multiple agents?

↓ Epistemic Logic

Planning

- How do we represent actions that change what agents know or believe?
- How do such actions change the current knowledge/beliefs of the agents?

\Downarrow

Dynamic Epistemic Logic

A (SLIGHTLY) PHILOSOPHICAL INTRODUCTION

Belief

Belief is a **propositional attitude** that something is true.

 \rightarrow Mental state held by an agent or organism toward a proposition.

Belief

Belief is a **propositional attitude** that something is true.

 \rightarrow Mental state held by an agent or organism toward a proposition.

And what does it mean to know that something is the case?

Belief

Belief is a **propositional attitude** that something is true.

 \rightarrow Mental state held by an agent or organism toward a proposition.

And what does it mean to know that something is the case?

The Tripartite Analysis of Knowledge

S knows that p iff

- 1 p is true;
- **2** S believes that p; and
- **3** S is justified in believing that p.

Belief

Belief is a **propositional attitude** that something is true.

 \rightarrow Mental state held by an agent or organism toward a proposition.

And what does it mean to know that something is the case?

The Tripartite Analysis of Knowledge

S knows that p iff

1 p is true;

2 S believes that p; and

3 S is justified in believing that p.

 \Rightarrow Justified True Belief (JTB)

John is standing outside a field and, within it, he sees what looks exactly like a sheep.

 $\rightarrow\,$ Does John know that there is a sheep if the field?

Let's analyse the situation:

- **1** John sure believes that a sheep if the field.
- 2 John is also justified in believing so: he clearly sees it!
- 3 But is it true that there is a sheep in the field?

John is standing outside a field and, within it, he sees what looks exactly like a sheep.

 $\rightarrow\,$ Does John know that there is a sheep if the field?

Let's analyse the situation:

- **1** John sure believes that a sheep if the field.
- 2 John is also justified in believing so: he clearly sees it!
- 3 But is it true that there is a sheep in the field?

What John does **not** realize is that what he sees is actually a dog, disguised as a sheep.

 $\rightarrow\,$ Can we now say that now John knows that there is a sheep if the field?

John is standing outside a field and, within it, he sees what looks exactly like a sheep.

 $\rightarrow\,$ Does John know that there is a sheep if the field?

Let's analyse the situation:

- **1** John sure believes that a sheep if the field.
- 2 John is also justified in believing so: he clearly sees it!
- 3 But is it true that there is a sheep in the field?

What John does **not** realize is that what he sees is actually a dog, disguised as a sheep.

 $\rightarrow\,$ Can we now say that now John knows that there is a sheep if the field?

Moreover, there is actually a sheep behind the hill in the middle of the field.

 \rightarrow What can we say now?

EPISTEMIC LOGIC

Let \mathcal{P} be a finite set of propositional atoms and $\mathcal{AG} = \{1, \ldots, n\}$ a finite set of agents. The **language** $\mathcal{L}_{\mathcal{P},\mathcal{AG}}$ of **Epistemic Logic** is given by the BNF:

Definition (Language of Epistemic Logic)

 $\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \Box_i \varphi,$

- \rightarrow Operator \Box_i : depending on the context, describes what agent *i* knows or believes.
- \rightarrow Dual operator \Diamond_i : describes what agent *i* considers to be possible or compatible.

An *epistemic state* represents both factual information and what agents know/believe.

Definition (Epistemic Model)

An *epistemic model* is a triple M = (W, R, V), where:

An *epistemic state* represents both factual information and what agents know/believe.

w

W٦

Definition (Epistemic Model)

An *epistemic model* is a triple M = (W, R, V), where:

W2

• $W \neq \emptyset$ is a finite set of **possible worlds**;

An *epistemic state* represents both factual information and what agents know/believe.

Definition (Epistemic Model)

An *epistemic model* is a triple M = (W, R, V), where:

- $W \neq \emptyset$ is a finite set of **possible worlds**;
- $R: \mathcal{AG} \to 2^{W \times W}$ assigns to each agent *i* an accessibility relation R_i ;

An *epistemic state* represents both factual information and what agents know/believe.

Definition (Epistemic Model)

An *epistemic model* is a triple M = (W, R, V), where:

- $W \neq \emptyset$ is a finite set of **possible worlds**;
- $R: \mathcal{AG} \to 2^{W \times W}$ assigns to each agent *i* an **accessibility relation** R_i ;
- $V: \mathcal{P} \to 2^W$ is a valuation function; and

An *epistemic state* represents both factual information and what agents know/believe.

Definition (Epistemic Model)

An *epistemic model* is a triple M = (W, R, V), where:

- $W \neq \emptyset$ is a finite set of **possible worlds**;
- $R: \mathcal{AG} \to 2^{W \times W}$ assigns to each agent *i* an **accessibility relation** R_i ;
- $V: \mathcal{P} \to 2^W$ is a valuation function; and

Definition (Epistemic State)

An *epistemic state* is a pair (M, W_d) s.t. $W_d \subseteq W$ is a non-empty set of **designated worlds**.

Definition (Truth)

Let $s = (M, W_d)$, where M = (W, R, V), be an *epistemic state* and let $w \in W$:

$$\begin{array}{ll} (M,w) \models \rho & \text{iff} & w \in V(\rho) \\ (M,w) \models \neg \phi & \text{iff} & (M,w) \not\models \phi \\ (M,w) \models \phi \land \psi & \text{iff} & (M,w) \models \phi \text{ and } (M,w) \models \psi \\ (M,w) \models \Box_i \phi & \text{iff} & \forall v \text{ if } w R_i v \text{ then } (M,v) \models \phi \end{array}$$

Moreover, $(M, W_d) \models \varphi$ iff $\forall w$ if $w \in W_d$ then $(M, w) \models \varphi$.

- □_{Anne}sunny
- □_{Bob}rainy
- □_{Anne}□_{Bob}rainy
- ♦_{Bob}□_{Anne}rainy

How can epistemic states represent the knowledge and the beliefs of agents?

 $\rightarrow\,$ We model them via axioms.

How can epistemic states represent the knowledge and the beliefs of agents?

 $\rightarrow\,$ We model them via axioms.

	Axiom	Frame Property	Knowledge	Belief
κ	$\Box_{\mathbf{i}}(\phi \to \psi) \to (\Box_{\mathbf{i}}\phi \to \Box_{\mathbf{i}}\psi)$	-	\checkmark	\checkmark
Т	$\Box_{i} \phi ightarrow \phi$	Reflexivity	\checkmark	
D	$\Box_i \phi \rightarrow \Diamond_i \phi$	Seriality	\checkmark	\checkmark
4	$\Box_{i} \phi \to \Box_{i} \Box_{i} \phi$	Transitivity	\checkmark	\checkmark
5	$\neg \Box_{i} \phi \rightarrow \Box_{i} \neg \Box_{i} \phi$	Euclideanness	\checkmark	\checkmark

An epistemic state represents:

- Knowledge, when it satisfies axioms K, T, 4 and $5 \Rightarrow \text{Logic S5}_n$
- **Belief**, when it satisfies axioms **K**, **D**, **4** and **5** \Rightarrow Logic KD45_n

DYNAMIC EPISTEMIC LOGIC

Classical actions are:

- 1 Propositional
- **2** Single-agent
- **3** Fully Observable
- 4 Deterministic

Example (Blocks World)

Example (Blocks World)

Classical actions are:

- 1 Propositional
- **2** Single-agent
- **3 Fully Observable**
- 4 Deterministic

Action move(b, x, y):

- $\blacksquare \operatorname{Pre}(\operatorname{move}(b, x, y)) = On(b, x) \land Clear(b) \land Clear(y)$
- Eff(move(b, x, y)) =
 - $\{On(b, y), Clear(x), \neg On(b, x), \neg Clear(y)\} \triangleright \top$

Example (Blocks World)

Classical actions are:

- 1 Propositional
- 2 Single-agent
- **3** Fully Observable
- 4 Deterministic

Action *move*(*b*, *x*, *y*):

- $\blacksquare \operatorname{Pre}(\operatorname{move}(b, x, y)) = On(b, x) \wedge Clear(b) \wedge Clear(y)$
- Eff(move(b, x, y)) = { $On(b, y), Clear(x), \neg On(b, x), \neg Clear(y)$ } $\triangleright \top$

 \rightarrow We now incrementally move from classical actions to epistemic actions.

Example (Epistemic Blocks World)

Agent *a*: only sees from above.

Example (Multi-Agent Epistemic Blocks World)

- Agent *a*: only sees from above.
- Agent *I*: only sees from a top left position.

Example (Multi-Agent Epistemic Blocks World)

- Agent *a*: only sees from above.
- Agent *r*: only sees from a top right position.

Example (Multi-Agent Epistemic Blocks World)

- Agent *a*: only sees from above.
- Agent *I*: only sees from a top left position.
- Agent *r*: only sees from a top right position.

Definition (Event Model)

An *event model* is a quadruple $\mathcal{E} = (E, Q, pre, post)$, where:

- $E \neq \emptyset$ is a finite set of **events**;
- $Q: \mathcal{AG} \to 2^{E \times E}$ assigns to each agent *i* an accessibility relation Q_i ;

Intuitively:

- An event can be seen as a classical action.
- Accessibility relations specify the perspectives of agents on which events take place.

Definition (Event Model)

An *event model* is a quadruple $\mathcal{E} = (E, Q, pre, post)$, where:

- $E \neq \emptyset$ is a finite set of **events**;
- $Q: \mathcal{AG} \to 2^{E \times E}$ assigns to each agent *i* an accessibility relation Q_i ;
- $pre: E \rightarrow \mathcal{L}_{\mathcal{P},\mathcal{A}\mathcal{G}}$ assigns to each event a **precondition**;
- *post* : $E \to (\mathcal{P} \to \mathcal{L}_{\mathcal{P},\mathcal{A}\mathcal{G}})$ assigns to each event and atom a **postcondition**.

Intuitively:

- An event can be seen as a classical action, each with its own pre- and postconditions.
- Accessibility relations specify the perspectives of agents on which events take place.

Definition (Event Model)

An *event model* is a quadruple $\mathcal{E} = (E, Q, pre, post)$, where:

- $E \neq \emptyset$ is a finite set of **events**;
- $Q: \mathcal{AG} \to 2^{E \times E}$ assigns to each agent *i* an accessibility relation Q_i ;
- pre : $E \rightarrow \mathcal{L}_{\mathcal{P},\mathcal{A}^{\mathsf{G}}}$ assigns to each event a precondition;
- *post* : $E \to (\mathcal{P} \to \mathcal{L}_{\mathcal{P},\mathcal{A}G})$ assigns to each event and atom a **postcondition**.

Intuitively:

- An event can be seen as a classical action, each with its own pre- and postconditions.
- Accessibility relations specify the perspectives of agents on which events take place.

Definition (Epistemic Action)

An *epistemic action* is a pair (\mathcal{E}, E_d) , s.t. $E_d \subseteq E$ is a non-empty set of **designated events**.
An action (\mathcal{E}, E_d) is **applicable** is an epistemic state (M, W_d) iff for each designated world $w \in W_d$ there exists a designated event $e \in E_d$ such that $(M, w) \models pre(e)$.

Definition (Product Update)

Given (M, W_d) and $(\mathcal{E}, \mathcal{E}_d)$, where M = (W, R, V) and $\mathcal{E} = (\mathcal{E}, \mathcal{Q}, pre, post)$, their product update $(M, W_d) \otimes (\mathcal{E}, \mathcal{E}_d)$ is the epistemic state $((W', R', V'), W'_d)$ where:

An action $(\mathcal{E}, \mathcal{E}_d)$ is **applicable** is an epistemic state (M, W_d) iff for each designated world $w \in W_d$ there exists a designated event $e \in \mathcal{E}_d$ such that $(M, w) \models pre(e)$.

Definition (Product Update)

Given (M, W_d) and $(\mathcal{E}, \mathcal{E}_d)$, where M = (W, R, V) and $\mathcal{E} = (\mathcal{E}, \mathcal{Q}, pre, post)$, their product update $(M, W_d) \otimes (\mathcal{E}, \mathcal{E}_d)$ is the epistemic state $((W', R', V'), W'_d)$ where:

• $W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$

An action (\mathcal{E}, E_d) is **applicable** is an epistemic state (M, W_d) iff for each designated world $w \in W_d$ there exists a designated event $e \in E_d$ such that $(M, w) \models pre(e)$.

Definition (Product Update)

Given (M, W_d) and $(\mathcal{E}, \mathcal{E}_d)$, where M = (W, R, V) and $\mathcal{E} = (\mathcal{E}, Q, \text{pre, post})$, their product update $(M, W_d) \otimes (\mathcal{E}, \mathcal{E}_d)$ is the epistemic state $((W', R', V'), W'_d)$ where:

•
$$W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$$

■
$$R'_i = \{((w, e), (v, f)) \in W' \times W' | wR_i v \text{ and } eQ_i f\};$$

An action $(\mathcal{E}, \mathcal{E}_d)$ is **applicable** is an epistemic state (M, W_d) iff for each designated world $w \in W_d$ there exists a designated event $e \in \mathcal{E}_d$ such that $(M, w) \models pre(e)$.

Definition (Product Update)

Given (M, W_d) and $(\mathcal{E}, \mathcal{E}_d)$, where M = (W, R, V) and $\mathcal{E} = (\mathcal{E}, Q, pre, post)$, their **product update** $(M, W_d) \otimes (\mathcal{E}, \mathcal{E}_d)$ is the epistemic state $((W', R', V'), W'_d)$ where:

•
$$W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$$

■
$$R'_i = \{((w, e), (v, f)) \in W' \times W' | wR_i v \text{ and } eQ_i f\};$$

• $V'(p) = \{(w, e) \in W' \mid (M, w) \models post(e)(p)\};$ and

An action $(\mathcal{E}, \mathcal{E}_d)$ is **applicable** is an epistemic state (M, W_d) iff for each designated world $w \in W_d$ there exists a designated event $e \in \mathcal{E}_d$ such that $(M, w) \models pre(e)$.

Definition (Product Update)

Given (M, W_d) and $(\mathcal{E}, \mathcal{E}_d)$, where M = (W, R, V) and $\mathcal{E} = (\mathcal{E}, Q, pre, post)$, their **product update** $(M, W_d) \otimes (\mathcal{E}, \mathcal{E}_d)$ is the epistemic state $((W', R', V'), W'_d)$ where:

•
$$W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$$

$$\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_i v \text{ and } eQ_i f\};\$$

• $V'(p) = \{(w, e) \in W' \mid (M, w) \models post(e)(p)\}; \text{ and }$

•
$$W'_d = \{(w, e) \in W' \mid w \in W_d \text{ and } e \in E_d\}$$

Public Announcement

Agent r tells everybody that he knows that $\neg On(b_1, s_3)$.

 $e: \langle \Box_r \neg On(b_1, s_3), \top \rangle$

Public Announcement

Agent r tells everybody that he knows that $\neg On(b_1, s_3)$.

 $e: \langle \Box_r \neg On(b_1, s_3), \top \rangle$

- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};\$
- $V'(p) = \{(w, e) \in W' \mid (M, w) \models post(e)(p)\};$ and
- $\blacksquare W'_d = \{(w, e) \in W' \mid w \in W_d \text{ and } e \in E_d\}.$

Public Announcement

Agent r tells everybody that he knows that $\neg On(b_1, s_3)$.

 $e: \langle \Box_r \neg On(b_1, s_3), \top \rangle$

- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};\$
- $V'(p) = \{(w, e) \in W' \mid (M, w) \models post(e)(p)\}; \text{ and }$
- $\blacksquare W'_d = \{(w, e) \in W' \mid w \in W_d \text{ and } e \in E_d\}.$

Public Announcement

Agent **r** tells everybody that he knows that $\neg On(b_1, s_3)$.

 $e: \langle \Box_r \neg On(b_1, s_3), \top \rangle$

- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};\$
- $V'(p) = \{(w, e) \in W' \mid (M, w) \models post(e)(p)\};$ and
- $\blacksquare W'_d = \{(w, e) \in W' \mid w \in W_d \text{ and } e \in E_d\}.$

Example

Semi-Private Sensing Action

Agent r peeks under block b_2 while agents a and l observe him. Specifically:

- Agents r and l observe what is actually being sensed.
- Agent a can not directly observe what agent r is seeing.

Trivial postconditions are omitted.

Example

Semi-Private Sensing Action

Agent r peeks under block b_2 while agents a and l observe him. Specifically:

- Agents r and l observe what is actually being sensed.
- Agent a can not directly observe what agent r is seeing.

Trivial postconditions are omitted.

- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};\$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};\$
- $V'(p) = \{(w, e) \in W' \mid (M, w) \models post(e)(p)\};$ and
- $\blacksquare W'_d = \{(w, e) \in W' \mid w \in W_d \text{ and } e \in E_d\}.$

Example

Semi-Private Sensing Action

Agent r peeks under block b_2 while agents a and l observe him. Specifically:

- Agents r and l observe what is actually being sensed.
- Agent a can not directly observe what agent r is seeing.

Trivial postconditions are omitted.

Definition (Product Update)

- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};\$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};\$
- $V'(p) = \{(w, e) \in W' \mid (M, w) \models post(e)(p)\};$ and
- $\blacksquare W'_d = \{(w, e) \in W' \mid w \in W_d \text{ and } e \in E_d\}.$

(*v*₂, *e*₂)

Example

Semi-Private Sensing Action

Agent r peeks under block b_2 while agents a and l observe him. Specifically:

- Agents r and l observe what is actually being sensed.
- Agent a can not directly observe what agent r is seeing.

Trivial postconditions are omitted.

- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};\$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};\$
- $V'(p) = \{(w, e) \in W' \mid (M, w) \models post(e)(p)\};$ and
- $\blacksquare W'_d = \{(w, e) \in W' \mid w \in W_d \text{ and } e \in E_d\}.$

Public Sensing Action All agents peek under block b_2 . \rightarrow Non-deterministic action! a, l, r a, r a, l, r a, r

- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};\$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};\$
- $V'(p) = \{(w, e) \in W' \mid (M, w) \models post(e)(p)\};$ and
- $\blacksquare \ W'_d = \{(w, e) \in W' \mid w \in W_d \text{ and } e \in E_d\}.$

- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};\$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};\$
- $V'(p) = \{(w, e) \in W' \mid (M, w) \models post(e)(p)\};$ and
- $\blacksquare W'_d = \{(w, e) \in W' \mid w \in W_d \text{ and } e \in E_d\}.$

Public Sensing Action All agents peek under block b_2 . \rightarrow Non-deterministic action! a, l, r b, r a, l, r a, l, r b, r a, l, r b, r a, l, r a, r b, r a, l, r b, rb

- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};\$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};\$
- $V'(p) = \{(w, e) \in W' \mid (M, w) \models post(e)(p)\};$ and
- $\blacksquare W'_d = \{(w, e) \in W' \mid w \in W_d \text{ and } e \in E_d\}.$

Example

Private Ontic Action

Agent I privately moves block b_2 from b_1 to b_3 , where:

- $pre = On(b_2, b_1) \land Clear(b_2) \land Clear(b_3)$
- $post(e_1)(On(b_2, b_1)) = \bot$
- $post(e_1)(On(b_2, b_3)) = \top$

Example

Private Ontic Action

Agent I privately moves block b_2 from b_1 to b_3 , where:

- $pre = On(b_2, b_1) \land Clear(b_2) \land Clear(b_3)$
- $post(e_1)(On(b_2, b_1)) = \bot$
- $post(e_1)(On(b_2, b_3)) = \top$

- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};\$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};\$
- $V'(p) = \{(w, e) \in W' \mid (M, w) \models post(e)(p)\};$ and
- $\blacksquare W'_d = \{(w, e) \in W' \mid w \in W_d \text{ and } e \in E_d\}.$

Example

Private Ontic Action

Agent I privately moves block b_2 from b_1 to b_3 , where:

- $pre = On(b_2, b_1) \land Clear(b_2) \land Clear(b_3)$
- $post(e_1)(On(b_2, b_1)) = \bot$
- $post(e_1)(On(b_2, b_3)) = \top$

 $e_{1}: \langle pre, post \rangle \qquad e_{2}: \langle \top, \top \rangle$

- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};\$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};\$
- $V'(p) = \{(w, e) \in W' \mid (M, w) \models post(e)(p)\};$ and
- $\blacksquare W'_d = \{(w, e) \in W' \mid w \in W_d \text{ and } e \in E_d\}.$

Example

Private Ontic Action

Agent I privately moves block b_2 from b_1 to b_3 , where:

- $pre = On(b_2, b_1) \land Clear(b_2) \land Clear(b_3)$
- $post(e_1)(On(b_2, b_1)) = \bot$
- $post(e_1)(On(b_2, b_3)) = \top$

 $\begin{array}{c|c} I & a, l, r \\ \hline a, r & \hline e_1 : \langle pre, post \rangle & e_2 : \langle \top, \top \rangle \end{array}$

Definition (Product Update)

- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};\$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};\$
- $V'(p) = \{(w, e) \in W' \mid (M, w) \models post(e)(p)\};$ and
- $\blacksquare W'_d = \{(w, e) \in W' \mid w \in W_d \text{ and } e \in E_d\}.$

 (v_2, e_2)

Example

Private Ontic Action

Agent I privately moves block b_2 from b_1 to b_3 , where:

- $pre = On(b_2, b_1) \land Clear(b_2) \land Clear(b_3)$
- $post(e_1)(On(b_2, b_1)) = \bot$
- $post(e_1)(On(b_2, b_3)) = \top$

 $e_{1}: \langle pre, post \rangle \qquad e_{2}: \langle \top, \top \rangle$

Definition (Product Update)

- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};\$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};\$
- $V'(p) = \{(w, e) \in W' \mid (M, w) \models post(e)(p)\};$ and
- $\blacksquare W'_d = \{(w, e) \in W' \mid w \in W_d \text{ and } e \in E_d\}.$

 (v_2, e_2)

Example

Private Ontic Action

Agent I privately moves block b_2 from b_1 to b_3 , where:

- $pre = On(b_2, b_1) \land Clear(b_2) \land Clear(b_3)$
- $post(e_1)(On(b_2, b_1)) = \bot$
- $post(e_1)(On(b_2, b_3)) = \top$

- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};\$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};\$
- $V'(p) = \{(w, e) \in W' \mid (M, w) \models post(e)(p)\};$ and
- $\blacksquare W'_d = \{(w, e) \in W' \mid w \in W_d \text{ and } e \in E_d\}.$

To summarize:

Classical actions are:

- Propositional
- **2** Single-agent
- **3** Fully Observable
- 4 Deterministic

Epistemic actions are:
Modal
Multi-agent
Partially Observable
Non-deterministic

Moreover, epistemic actions model both factual and higher-order knowledge change.

 \rightarrow There are **no restrictions** on the reasoning power of agents! (More on this later)

Definition (Planning Task)

An (epistemic) planning task is a triple $T = (s_0, A, \phi_g)$, where:

- *s*₀ is an initial epistemic state;
- *A* is a finite **set of actions**;
- $\varphi_g \in \mathcal{L}_{\mathcal{P},\mathcal{A}\mathcal{G}}$ is a goal formula.

Definition (Planning Task)

An (epistemic) planning task is a triple $T = (s_0, A, \phi_g)$, where:

- *s*₀ is an initial epistemic state;
- A is a finite set of actions;
- $\varphi_g \in \mathcal{L}_{\mathcal{P},\mathcal{A}\mathcal{G}}$ is a goal formula.

Definition (Solution)

A solution to a planning task $(s_0, \mathcal{A}, \phi_g)$ is a finite sequence $\alpha_1, \ldots, \alpha_m$ of actions of \mathcal{A} s.t.:

1 For each
$$1 \leq k \leq m$$
, α_k is applicable in $s_0 \otimes \alpha_1 \otimes \cdots \otimes \alpha_{k-1}$, and

$$2 s_0 \otimes \alpha_1 \otimes \cdots \otimes \alpha_m \models \varphi_g.$$

Definition (Plan Existence Problem)

Let $n \ge 1$ and \mathcal{T} be a class of planning tasks. PlanEx(\mathcal{T} , n) is the following decision problem: "Given a planning task $\mathcal{T} = (s_0, \mathcal{A}, \varphi_g) \in \mathcal{T}$, where $|\mathcal{A}\mathcal{G}| = n$, does \mathcal{T} have a solution?"

Theorem (Bolander and Andersen [BA11])

Let T be the class of all epistemic planning tasks and let $n \ge 1$. Then, PlanEx(T, n) is **undecidable**.

CURRENT CHALLENGES

A great deal of effort has been spent over the past decade to devise **decidable** fragments of the epistemic plan existence problem.

Let $\mathcal{T}(a, b)$ denote the class of epistemic planning tasks where:

- *a* is the maximum modal depth of **preconditions**, and
- *b* is the maximum modal depth of **postconditions**. We indicate with b = -1 the absence of postconditions.

$PlanEx(\mathfrak{T}(0,-1), n)$	PSPACE-complete [CMS16]
$PlanEx(\mathfrak{T}(1,-1), n)$	Unknown [CMS16]
$PlanEx(\mathfrak{T}(2,-1), n)$	UNDECIDABLE [CMS16]
$PlanEx(\mathfrak{T}(0,0), n)$	DECIDABLE [YWL13; AMP14]
$PlanEx(\mathfrak{T}(1,0), n)$	DECIDABLE [Bol+20]

Others have focused on considering the plan existence problem of tasks under well-known modal logics (Aucher and Bolander [AB13]).

Logic	Single-agent	Multi-agent
K		
KT	UNDECIDABLE	
K4		
K45	DECIDABLE	
S4	UNDECIDABLE	
S5	DECIDABLE	

What if we combined the two previous approaches together?

 \rightarrow We can limit the reasoning power of agents via modal axioms.

What if we combined the two previous approaches together?

 $\rightarrow\,$ We can limit the reasoning power of agents via modal axioms.

Knowledge Commutativity

 $\mathbf{C} \quad \Box_i \Box_j \phi \to \Box_j \Box_i \phi$

We call $C-S5_n$ the logic $S5_n$ augmented with axiom **C**.

What if we combined the two previous approaches together?

 \rightarrow We can limit the reasoning power of agents via modal axioms.

Knowledge Commutativity ${\sf C} \quad \Box_i \Box_j \phi \to \Box_j \Box_i \phi$

We call $C-S5_n$ the logic $S5_n$ augmented with axiom **C**.

Lemma (Burigana et al. [Bur+23])

Let (M, W_d) be a bisimulation-contracted C-S5_n-state, with M = (W, R, V). Then, |W| is bounded in n and $|\mathcal{P}|$.

Theorem (Burigana et al. [Bur+23])

The plan existence problem in $C-S5_n$ is decidable.

Generalizing Commutativity

Let b > 1 be a fixed integer constant:

b-Commutativity

$$\mathbf{C}^{b} \quad (\Box_{i}\Box_{j})^{b}\varphi \to (\Box_{j}\Box_{i})^{b}\varphi$$

Let $1 < \ell \leq n$ be a fixed integer constant, let $\langle i_1, \ldots, i_\ell \rangle$ be a repetition-free sequence of agents and let π be any of its permutations:

Weak Commutativity

$$\mathbf{wC}_{\ell} \quad \Box_{i_{1}} \dots \Box_{i_{\ell}} \phi \to \Box_{\pi_{i_{1}}} \dots \Box_{\pi_{i_{\ell}}} \phi$$

- We call \mathbf{C}^{b} -**S5**_n the logic S5_n augmented with axiom \mathbf{C}^{b} .
- We call \mathbf{wC}_{ℓ} -S5_n the logic S5_n augmented with axiom \mathbf{wC}_{ℓ} (for all π).

We obtain positive results:

Logic	Decidability
$K_n, K_n, KT_n, K4_n, K45_n, S4_n, S5_n$	UNDECIDABLE [AB13]
$C^{b}-S5_{n}$ (n>2)	UNDECIDABLE [Bur+23]
C ^{<i>b</i>} -S5 ₂	
wC _l -S5 _n	DECIDABLE [Bur+23]
C-S5 _n	

- Well-known epistemic planning formalism are captured by $C-S5_n$.
- Flexible approach: different axioms can be devised depending on the situation.
- No strong restrictions on modal depth.

Current approaches:

- Compilation of fragments of DEL into classical planning.
- Bisimulation-contraction techniques.
- Ad hoc implementations of fragments of DEL.
Current approaches:

- Compilation of fragments of DEL into classical planning.
- Bisimulation-contraction techniques.
- Ad hoc implementations of fragments of DEL.

Future directions:

- **Symbolic** approaches: SMT encodings, syntactic models.
- Heuristics, heuristics, heuristics.
 - \rightarrow Currently working on: Epistemic Planning Graph.
- Bounded bisimulation contractions.

The many fragments of DEL are hard to compare:

- \rightarrow Different ad hoc languages (if any) capture only a part of DEL.
- $\rightarrow\,$ Different custom benchmarks.

The many fragments of DEL are hard to compare:

- \rightarrow Different ad hoc languages (if any) capture only a part of DEL.
- $\rightarrow\,$ Different custom benchmarks.

We need a unified language for the entire DEL semantics. This would allow the following:

- Standard language to represent epistemic planning domains.
- Development of a publicly available and shared set of benchmarks.
- Easier comparison of results.
 - $\rightarrow\,$ Better overall progress of efficient techniques.

The many fragments of DEL are hard to compare:

- $\rightarrow\,$ Different ad hoc languages (if any) capture only a part of DEL.
- $\rightarrow\,$ Different custom benchmarks.

We need a unified language for the entire DEL semantics. This would allow the following:

- Standard language to represent epistemic planning domains.
- Development of a publicly available and shared set of benchmarks.
- Easier comparison of results.
 - \rightarrow Better overall progress of efficient techniques.

Currently working on **EPDDL**:

 $\rightarrow\,$ Borrows the well-known syntax of PDDL and extends it to capture the whole DEL semantics.

Some axioms might "break" after product update.

- $\rightarrow\,$ The state is no longer serial $\rightarrow\,$ Axiom D is not preserved.
- $\rightarrow\,$ The state does not represent what agent a believes.

Some axioms might "break" after product update.

- \rightarrow The state is no longer serial \rightarrow Axiom D is not preserved.
- \rightarrow The state does not represent what agent a believes.

How do we fix this?

- **Plausibility models**: belief of the agent is captured by the most plausible worlds.
 - $\rightarrow\,$ We recover a's beliefs by looking at what he considers to be plausible.
- Recovery: prior to public announcements, we do a recovering action that "expands" the agents' beliefs.
- Modifying the product update operator.

Epistemic planning is still a relatively recent research area.

- \rightarrow Many things still to address.
- $\rightarrow\,$ Has not been exploited in real scenarios.

Different areas would benefit from epistemic planning and reasoning:

Multi-Agent Systems

- \rightarrow Self-driving vehicles
- \rightarrow Social commitments
- \rightarrow Business Process Management

Legal reasoning

Virtually any scenario involving uncertainty and/or different perspectives

THANK YOU Questions?