A computable and compositional semantics for hybrid systems

Davide Bresolin¹ Pieter Collins² Luca Geretti³ Roberto Segala³ Tiziano Villa² Sanja Živanović Gonzalez⁴

¹University of Padova, Italy

2University of Maastricht, The Netherlands

³University of Verona, Italy

⁴ AlphaStaff, USA

iFM² – Udine, 14 October 2024

Hybrid systems

Many real systems have a double nature:

- \blacksquare they evolve in a continuous fashion
- \blacksquare they are controlled by a discrete system

They are called hybrid systems and interact with the physical world via sensors and actuators, usually with feedback loops where physics affects computation and vice versa

[Introduction](#page-1-0) [Hybrid I/O Automata](#page-5-0) [Compositional HIOAs](#page-10-0) [Computable Analysis](#page-19-0) [Computable HIOAs](#page-22-0) [Conclusions](#page-28-0)

What is this talk about?

- \blacksquare to define a mathematically precise semantics
	- to describe the evolution of hybrid systems
	- so that arbitrarily accurate approximations can be computed
- \blacksquare in a compositional way

[Introduction](#page-1-0) [Hybrid I/O Automata](#page-5-0) [Compositional HIOAs](#page-10-0) [Computable Analysis](#page-19-0) [Computable HIOAs](#page-22-0) [Conclusions](#page-28-0)

The building blocks

\blacksquare the model of hybrid I/O automata

- \triangleright that gives a formalism to describe hybrid systems in a compositional way
- \blacksquare the theory of computable analysis
	- \triangleright that gives the condition under which we can approximate the evolution of dynamical systems

Our contribution

[Introduction](#page-1-0) [Hybrid I/O Automata](#page-5-0) [Compositional HIOAs](#page-10-0) [Computable Analysis](#page-19-0) [Computable HIOAs](#page-22-0) [Conclusions](#page-28-0)

We propose an automata-based formalism (HIOA) for hybrid system that

\blacksquare is compositional

replacing a component with another one with the same $1/O$ behaviour does not change the I/O behaviour of the composition

\blacksquare is computable

 \triangleright if we can approximate the evolution of components, then we can approximate the evolution of the composition

Hybrid input/output automaton $H_{i/o} = (I, O, U, Y, R_{i/o}, F_{i/o})$:

- \blacksquare *I*, *O* are input and output events. $A = I \cup O$;
- \blacksquare *U*, *Y* are input and output variables. $V = U \cup Y$;
- The discrete input/output behaviour is a multifunction

$$
R_{i/o}: Val(V) \times (A \cup \{\tau\}) \times Val(U) \rightrightarrows Val(Y);
$$

The continuous input/output behaviour is a multifunction

$$
F_{i/o}: \mathrm{Val}(Y) \times \mathrm{CTrajs}(U) \rightrightarrows \mathrm{CTrajs}(Y)
$$

respecting some natural prefix- and suffix- closure conditions.

I Input variables: ω

- **a** Output variables: *q*
- **I** Input events: τ (not shown)
- Output events: e_{sw} (gear switch)

Purely continuous component:

$$
\dot{v}(t) = \frac{p_{r}(q)u(t)}{m} - \frac{c}{m}v(t)^{2} - g \sin(d(t)); \qquad v(0) = 0;
$$

$$
\omega(t) = p_{r}(q)v(t);
$$

(gear ratio $r(q)$, mass *m*, friction coefficient *c*, grav. accel. *g*)

- Input variables: *q, u, d*
- \blacksquare Output variables: v, ω
- **I** Input events: τ (not shown)
- \blacksquare Output events: \emptyset

PI-controller with control law:

$$
u(t) = k_{r}(q)(v_{ref}(t) - v(t)) + u_{I}(t)
$$

$$
\dot{u}_{I}(t) = \frac{k_{r}(q)}{t_{I}}(v_{ref}(t) - v(t)) \qquad u_{I}(0) = 0;
$$

- $(t_1:$ integration time constant, $k_r(q)$: controller gain)
	- Input variables: *q*, *v*, *v_{ref}*
	- \blacksquare Output variables: *u*, *u*_I

\n- Input events:
$$
\tau
$$
 (not shown)
\n- e_{ref} : c rmise speed is changed; u_l to 0
\n- Output events: \emptyset
\n

[Introduction](#page-1-0) [Hybrid I/O Automata](#page-5-0) **[Compositional HIOAs](#page-10-0)** [Computable Analysis](#page-19-0) [Computable HIOAs](#page-22-0) [Conclusions](#page-28-0)
0000 00000 00000 000 000 000 000 000

Circular dependencies

- Key Challenge: Circular dependencies in hybrid systems
- **E** Problem: Circular dependencies lead to non-converging loops, preventing system composition
- Solution Overview: Using interfaces and atomic components to resolve dependency issues

Introducing Interfaces

[Introduction](#page-1-0) [Hybrid I/O Automata](#page-5-0) [Compositional HIOAs](#page-10-0) [Computable Analysis](#page-19-0) [Computable HIOAs](#page-22-0) [Conclusions](#page-28-0)

Atomic Interfaces

[Introduction](#page-1-0) [Hybrid I/O Automata](#page-5-0) [Compositional HIOAs](#page-10-0) [Computable Analysis](#page-19-0) [Computable HIOAs](#page-22-0) [Conclusions](#page-28-0)

- Atomic Interfaces: Break down complex interfaces into simpler components
- Unidirectional Components: All output variables depend on all input variables
- Advantages: Simplifies dependency checks and ensures well-structured, computationally feasible compositions

[Introduction](#page-1-0) [Hybrid I/O Automata](#page-5-0) **[Compositional HIOAs](#page-10-0)** [Computable Analysis](#page-19-0) [Computable HIOAs](#page-22-0) [Conclusions](#page-28-0)
0000 000000 0000000 00000000 000 000

Composition and Dependent Product

- Definition of Compatibility: Two atomic components can be composed if no circular dependencies are introduced
- Dependent Product: Composition rule where outputs of one component serve as inputs to another
- Key Insight: Behavior of composed systems is computed step-by-step using the dependent product

[Introduction](#page-1-0) [Hybrid I/O Automata](#page-5-0) **[Compositional HIOAs](#page-10-0)** [Computable Analysis](#page-19-0) [Computable HIOAs](#page-22-0) [Conclusions](#page-28-0)
0000 00000 00000 000000000 000 000

Atomic Decomposition of Automata

- Atomic Decomposition: A hybrid automaton can be decomposed into smaller atomic components
- Result: The behavior of any complex automaton can be computed using dependent products of atomic decompositions
- Union Property: The atomic decompositions of two automata combine to form a decomposition of their composition

- Dependency Definition: A variable does not depend on others if changes in those variables don't affect it
- Challenge in Trajectories: Time dependencies make it complex to handle past, present, and future
- Distinction:
	- Algebraic Dependency: $x = f(y)$ (Deals with present)
	- ight Integral Dependency: $\dot{x} = f(x, y)$ (Deals with future)

- Circular Dependency Resolution: Only impose constraints on algebraic dependencies
- \blacksquare Integral Dependencies: Governed by differential equations, common in control theory
- Solution: Use fixpoint operators to compute dependent products under integral dependencies

Speed controller:

↭ *u* has algebraic dependence on *v, vref*

Gearbox Controller:

n no dependencies, *q* changes only at discrete events

Gearbox:

- \blacksquare ω has algebraic dependence on *q*
- \blacksquare *v* has integral dependence on *u*, *d*, *q*

No dependency loops, components are compatible

Computable analysis

- In computable analysis, computation is performed on infinite streams of data
- data streams encode a sequence of approximations to some quantity
- \blacksquare A function or operator is computable if:
	- \triangleright from data streams encoding the inputs
	- \triangleright it is possible to calculate a data streams encoding the outputs
- \blacksquare Finite computations are obtained by terminating when an accuracy criterion is satisfied.
- Computable analysis allows to determine whether a certain problem can be approximated to any accuracy

- Consider the problem of testing whether a guard $p(x) \geq 0$ is true or not
- **If** x is a rational number, $p(x)$ can be computed exactly and the problem is solvable
- \blacksquare If the input is a sequence of approximations that converges to *x*, the problem becomes semi-decidable:
	- when $p(x) < 0$ or $p(x) > 0$, we can find an approximation \tilde{x} of *x* that proves that the guard is false/true
	- when $p(x) = 0$, no matter how accurate \tilde{x} is, we cannot give a definite answer

[Introduction](#page-1-0) [Hybrid I/O Automata](#page-5-0) [Compositional HIOAs](#page-10-0) [Computable Analysis](#page-19-0) [Computable HIOAs](#page-22-0) [Conclusions](#page-28-0)

A fundamental theorem

Theorem

Only continuous functions and operators can be computable

- discontinuous functions and operators are uncomputable
- computability depends on the choice of representation and on the corresponding topology
	- "naturally-defined" continuous operators are usually computable

Theorem (P. Collins, 2011)

The finite-time evolution of a hybrid system is uncomputable.

By imposing restrictions on dynamics, reset functions, guards and invariants we can regularize the evolution to make it approximable either from above or from below

$.$ however $.$.

- the conditions for approximation of the reachable set from above are different from the ones for approximation from below
- we can only obtain a semi-decidable problem

- Compactness: Functions are bounded and can be managed with finite computational resources
- Overtness: Logical dual of compactness
- Lipschitz continuity: Functions have a bounded rate of change
- \blacksquare Linear growth: Function growth is limited by a linear function
- Upper Semicontinuity: Prevents downward jumps in the function, but allows upward jumps
- \blacksquare Lower Semicontinuity: Prevents upward jumps in the function, but allows downward jumps

- \blacksquare Key Insight: By focusing on specific combinations of these function classes, we can ensure:
	- \blacktriangleright Theoretical soundness
	- Computational tractability

■ Outcome: These combinations identifies when the system can be approximates "from above" or "from below"

[Introduction](#page-1-0) [Hybrid I/O Automata](#page-5-0) [Compositional HIOAs](#page-10-0) [Computable Analysis](#page-19-0) [Computable HIOAs](#page-22-0) [Conclusions](#page-28-0)

Theorem

Main Theorem

The composition $H_i/_{01} \parallel H_i/_{02}$ *is computable for the following classes of systems:*

- 1. *The input/output maps R*i*/*o*, F*i*/*^o *are upper-semicontinuous compact-valued, and F*i*/*^o *is an e*!*ectively compact operator with linear growth.*
- 2. $R_{i/0}, F_{i/0}$ are lower-semicontinuous overt-valued, and $F_{i/0}$ is *e*!*ectively locally Lipschitzian.*
- 3. *R*i*/*o*, F*i*/*^o *are continuous single-valued over a closed (respectively, open) set, and F*i*/*^o *is e*!*ectively locally Lipschitzian with linear growth.*

Tool support

[Introduction](#page-1-0) [Hybrid I/O Automata](#page-5-0) [Compositional HIOAs](#page-10-0) [Computable Analysis](#page-19-0) [Computable HIOAs](#page-22-0) [Conclusions](#page-28-0)

- The compositional framework has been implemented in **ARIADNE**
- \blacksquare The current version allows to model systems as HIOA
- The composed system must be closed in order to compute its evolution
- \blacksquare Composition is performed on the fly
- \blacksquare Work is under way on the modeling of inputs using differential inclusions

- We provide a theory for computable composition of HIOA (missing in the literature)
- The theory is a prerequisite to develop a library that guarantees sound approximations
- \blacksquare It is our goal to extend the results to more general classes of Hybrid I/O Automata
- Implementation of reachability analysis routines for hybrid open systems is under way in $ARIADNE$

- Davide Bresolin, Pieter Collins, Luca Geretti, Roberto Segala, Tiziano Villa, Sanja Živanović Gonzalez. A computable and compositional semantics for hybrid systems. Information and Computation 300: 105189 (2024).
- Pieter Collins. Semantics and Computability of the Evolution of Hybrid Systems. SIAM Journal on Control and Optimization 49, 2 (2011), 890–925.
- Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid I/O automata. Information and Computation 185, 1 (2003), $105 - 157$
- Ariadne: an open library for formal verification of cyber-physical systems. <http://www.ariadne-cps.org>