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Regular = Monadic Second Order Logic

One of the most fundamental results in language theory connects regular word
languages and logic.

Theorem (Biichi, Elgot, Trakhtenbrot, late 1950s)

A language of finite words L over a finite alphabet X is regular ift it is
definable in Monadic Second Order Logic.

The same is true when one replaces word languages with tree languages.

Theorem (Doner, Thatcher & Wright, mid 1960s)

A language of finite trees L over a finite alphabet X is regular iff it is
definable in Monadic Second Order Logic.

Many generalizations: infinite words, infinite trees, even graphs of bounded treewidth!



Monadic Second Order Logic

Monadic Second Order Logic (MSO) is Second Order Logic in which

second order quantification is limited to monadic predicates, i.e., sets.

Over words, MSO can quantify over sets of “positions” of the word.
q y p

Opver trees, it can quantify over sets of nodes of the tree.



Another notion of regularity (for words)

A finite monoid M consists of a finite set S equipped with a binary

multiplication operation, which is associative, and a neutral element.

A monoid homomorphism is a function between underlying sets of

monoids, that preserves the multiplication operation.

A language L & 2* is recognized by a monoid homomorphism ift
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Another notion of regularity (for words)

Theorem

A language of finite words L over a finite alphabet X is regular ift it is

recognized by a finite monoid homomorphism.

The syntactic monoid of a language L is the target of a surjective monoid homomorphism h,

such that it recognizes L and the following commutes:

>+ h M
For every surjective
g ] homomorphism that recognises L,
surjective
N homomorphism that extends it to

h.

Every regular language has an effectively presentable syntactic monoid.
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A natural question

MSO = regular (word) languages = finite monoids

What about strict fragments of MSO? Is it possible to obtain similar

characterisations for less powerful logics?

Given a fragment F¥ of MSO, is the following decidable?

Input: A regular language L
Question: Is L definable in F?
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Positive answers

Opver finite words, many positive answers.

Theorem (Schiitzenberger (1965))

First Order Logic [<] = star-free regular languages = Aperiodic monoids
( a)» — a>L+1)

Theorem (Simon (1975))

Boolean combination of X, = piecewise testable languages= /-trivial

monoids (MaM = Ma’M — a =2))

Theorem (Pin & Weil (1997))

FO[<] with two variables = DA monoids ((ab)*= (ab)"a(ab)")



Why is this effective?

The previous characterisations all yielded algorithms to decide the

definability in the given logic. The algorithms works this way:

1. Take an arbitrary representation of the language (regular
expressions, MSO, automata, ...).

2. Transtorm the representation of the language in a finite monoid.

.

Compute the syntactic monoid of the language.
4. Check if the syntactic monoid satisfies the equation specified in the

theorem.



What about tree languages?

How can one approach this problem for trees?

First definitions and approaches: Thomas (1984, 1987).

In the following, finite and infinite trees will be mixed without a lot of

precision.



Logics for trees

Thomas identifies three “fragment” of MSO over trees:

® Monadic Antichain Logic: set quantification limited to
incomparable nodes wrt <.

® Monadic Chain Logic: set quantification limited to comparable
nodes wrt <.

e FO/Monadic Path logic: quantification limited to nodes/paths.
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Aperiodicity for trees

A context is a tree with exactly one special constant instead of a leaf (or

of an infinite subtree, if we are in the case of infinite trees).

Given a finite alphabet 2, the set S of all the contexts obtainable from ¥

is a monoid with “tree concatenation” as the multiplication operation.

A tree language T'is aperiodic if for every element a of its syntactic

monoid it holds a* = a**1.



Monadic Antichain Logic = MSO

The definability problem for Antichain Logic is trivial, because
Potthoff & Thomas (1993) show that

Monadic Antichain Logic = MSO

OVer trees.
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Monadic Chain Logic

Chain Logic is a very well studied logic over trees. What is known:

1. Itis incomparable with aperiodicity.
2. There are many different modal logics effectively equivalent to it.

3. Two recent (2024) automaton-based characterisations.

No clue about an algebraic characterisation. A conjecture (Bojanczyk,
2004).
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First Order Logic

What is known:

1. Thomas (1984) shows that every FO-definable tree language is
aperiodic. Heuter (1991) shows that there is an aperiodic language
that is not FO-definable.

2. There are many different modal logics effectively equivalent to it.

3. There are two automaton-based characterisations (this work).

Again, no clue about an algebraic characterisations, not even a

conjecture.
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Side problem

Chain Logic and FO are very close. Can one at least decide if a

Chain-definable tree language is FO-definable?

The answer is tricky and currently unknown. A natural conjecture, i.c.,
Chain Logic " Aperiodic = FO
was proved false by Potthoft (1995).

Solving this problem would reduce the FO-definability problem to the
Chain Logic-definability.



Other directions

Many other algebraic frameworks were pursued after Thomas. The two

most important ones are:

1. preclones (Esik & Weil, 2005)
2. forest algebras (Bojanczyk & Walukiewicz, 2008)

In both these formalisms (2009, 2012) a non-effective characterisation
of FO-definability is obtained. Again, no insight about an effective

characterisation.



Positive answers

There are some positive results. For the following logics, the definability

problem over trees is decidable:

temporal logics EX, EF, EX+EF, EF + F ©.
Boolean combinations of 21 formulas.

A,

FOIS,...S,].
FO[<] with two variables.
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A different approach?

What’s missing for regular tree languages? A strong algebraic
framework. This is even more true for infinite trees.

One could argue that solving the definability problem means to
understand deeply a language class.

Is there another way to gain a decent understanding of a language
class?
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What about automata?

Automaton-based characterisations can help in getting a good
understanding of a logic over certain structures, even without solving

the definability problem.

Prominent example: automaton for p-calculus by Janin &
Walukiewicz (1996).

Recent advances: automata for Monadic Path Logic and Monadic
Chain Logic (Bozzelli, Benerecetti, Mogavero & Peron, 2024).
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Our work

Main result:

We obtained two automaton-based characterisations of FO

with < over infinite trees.

In detail:

1. we investigated two branching-time temporal logics already shown
equivalent to FO over infinite trees;

2. we found two automaton classes eftectively equivalent to the temporal logics,
and consequently to FO;

3. from the automaton-based characterisations, we got normal forms for the
temporal logics and gained insight into the behaviour of FO over infinite

trees.
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Infinite trees

The trees we consider are infinite. unranked and unordered.

% Infinite: every maximal path is infinite (no leaves);
% Unranked: there is no bound (apart from finiteness) on the number
of successors of a node;

¢  Unordered: the order of the successors of a given node is irrelevant.
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Connections to modal y.—calculus

Syntactic restriction of Polarized CTL: similar to Propositional Dynamic Logic.

Carreiro & Venema (2014) show that PDL is a fragment of the modal
mu-calculus in which existential modalities can only be paired with
least-fixpoint operators, and universal modalities can only be

paired with greatest fixpoint operators.

Polarized CTL is a proper fragment of PDL.

Open problem: what is the fragment of p-calculus coinciding with Polarized CTL?
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CTL* over finite paths

The second branching-time temporal logic is syntactically identical to the

classic counting CTL* but:

e the usual path quantifiers refer only to non-empty finite paths;

e itisequivalent to FO over trees, too.

¢=p| 9|V o|De|EY
Vo | ¥ V| Xy [ YUY
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Finite path quantiﬁcation

The semantic restriction of CTL* over finite paths trivializes many

formulas. The simplest examples are:

EXp T AXpe L

where X is the weak version of the X operator.
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Automaton-based characterisations

We proved that two automaton classes are equivalent to Polarized CTL and

CTL* over finite paths, and consequently to FO.
The two automaton classes share many similarities, since they are both:

Alternating: they mix nondeterminism and universal branching;

X/ Y/
DS X

Weak: they can switch a finite number of times between accepting and

rejecting states;

7/
%

Hesitant: the state-set is partitioned in a way that simulates the diftference

between existential and universal path quantifiers.
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Hesitant restriction: Universal components

The automaton
enters the universal
component

The automaton can pick many

successors in the component, even
all of them, and then send them to
all the children of the current input.

The automaton send transitions
to components of lower order.
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Two-way vs One-way head movements

Most interesting difference: head movement.

The automaton class modeled after Polarized CTL allows two-way
head movements along the input tree; the other does not.
Why is it interesting?

Unlike the case of word automata, two-way head
movements increase expressiveness!

One has to impose different restrictions on the state set to obtain
equivalence with FO.
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Two—way restriction

If two-way head movements are available, a very simple restriction is

needed to obtain FO expressiveness.

State-set can be partitioned in linearly ordered singletons.
Every singleton must be of an “hesitant” type.

Similar to alternating automata for FO over words.
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Conjecture

Call the automaton-class modeled after Polarized CTL: Polarized Auto. We

proved:

2-way Polarized Auto is strictly more expressive than 1-way
Polarized Auto.

We conjecture that the FordAuto is strictly less expressive than FO, because of

the following.
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One—way restriction

To regain FO expressiveness with one-way head movements: more
work needed.

State-set can be partitioned but no restriction on the size of the
components.

The first restriction is:

Every component, seen as a word automaton, is
counter-free.

Counter-free automata are the automata equivalent to FO over words.
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One—way restriction

The counter-free restriction is not enough.

Second restriction:

The components are equivalent to a SafetyLTL formula
when universal and to a CoSafetyLTL formula when
existential.

SatetyLTL = Safety fragment of FO over words.
CoSafetyLIL = CoSafety fragment of FO over words.



Results

Automaton-class modeled after Polarized CTL: Polarized Auto.

Automaton-class modeled after CTL* over finite paths: CTL*Auto.



Results

Automaton-class modeled after Polarized CTL: Polarized Auto.

Automaton-class modeled after CTL* over finite paths: CTL*Auto.

Polarized CTL &

FO

CTL* over finite paths @



Results

Automaton-class modeled after Polarized CTL: Polarized Auto.

Automaton-class modeled after CTL* over finite paths: CTL*Auto.

2-way Polarized Auto < Polarized CTL &

FO

CTL* over finite paths @



Results

Automaton-class modeled after Polarized CTL: Polarized Auto.

Automaton-class modeled after CTL* over finite paths: CTL*Auto.

2-way Polarized Auto < Polarized CTL &

FO

1-way CTL*Auto CTL* over finite paths M
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Normal forms and insight into FO over infinite trees

The two automaton-based characterisations of FO we obtained offered as a by-product two normal
forms for Polarized CTL:

o=p|-¢|o V ¢|D"¢|EFy
V=V AV V Y Y[ 4Sy
and CTL* over finite paths:
o=p|-¢|e V ¢|D'o|Ey
V=¥ AV | Xy YUy

Take-away messagge

Opver infinite trees, when FO predicates existentially over a path, it can only
express co-safety properties, while when it predicates over all paths, it can
only express safety properties.




Conclusions

We obtained:
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Open problems: Definability problem

What about the definability problem?
Our work does not provide an immediate advancement.
However, ...

Over finite trees, Bojanczyk (2009) proves that the definability
problem for the logic

o=p|@|e V ¢ |EFp| TSe
is decidable.

Very similar to normal form of Polarized CTL!

Idea: Investigate definability problem of Polarized CTL over finite

trees.



Open problems: Automata simulation

2-way Polarized Auto and 1-way CTL*Auto are equivalent by the

equivalence of temporal logics.

Interesting problem: Find direct simulation of each automaton by the

other.
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Open problems: Full CTL with past expressiveness

Schlingloft (1992): Polarized CTL with past = FO
Full CTL with past = ?
Moller & Rabinovich (2003): CTL* = Monadic Path Logic

Polarized CTL with past < Full CTL with past < CTL*






