
Definability problem and automata for first order logic
over trees

Angelo Matteo, University of Udine

joint work with M. Benerecetti, D. Della Monica, F. Mogavero and
G. Puppis

informal Formal Methods Meetings,
October 8, 2025

Regular = Monadic Second Order Logic

One of the most fundamental results in language theory connects regular word
languages and logic.

Regular = Monadic Second Order Logic

One of the most fundamental results in language theory connects regular word
languages and logic.

Theorem (Büchi, Elgot, Trakhtenbrot, late 1950s)

A language of finite words L over a finite alphabet Σ is regular iff it is
definable in Monadic Second Order Logic.

Regular = Monadic Second Order Logic

One of the most fundamental results in language theory connects regular word
languages and logic.

The same is true when one replaces word languages with tree languages.

Theorem (Büchi, Elgot, Trakhtenbrot, late 1950s)

A language of finite words L over a finite alphabet Σ is regular iff it is
definable in Monadic Second Order Logic.

Regular = Monadic Second Order Logic

One of the most fundamental results in language theory connects regular word
languages and logic.

The same is true when one replaces word languages with tree languages.

Theorem (Büchi, Elgot, Trakhtenbrot, late 1950s)

A language of finite words L over a finite alphabet Σ is regular iff it is
definable in Monadic Second Order Logic.

Theorem (Doner, Thatcher & Wright, mid 1960s)

A language of finite trees L over a finite alphabet Σ is regular iff it is
definable in Monadic Second Order Logic.

Regular = Monadic Second Order Logic

One of the most fundamental results in language theory connects regular word
languages and logic.

The same is true when one replaces word languages with tree languages.

Many generalizations: infinite words, infinite trees, even graphs of bounded treewidth!

Theorem (Büchi, Elgot, Trakhtenbrot, late 1950s)

A language of finite words L over a finite alphabet Σ is regular iff it is
definable in Monadic Second Order Logic.

Theorem (Doner, Thatcher & Wright, mid 1960s)

A language of finite trees L over a finite alphabet Σ is regular iff it is
definable in Monadic Second Order Logic.

Monadic Second Order Logic

Monadic Second Order Logic (MSO) is Second Order Logic in which
second order quantification is limited to monadic predicates, i.e., sets.

Over words, MSO can quantify over sets of “positions” of the word.
Over trees, it can quantify over sets of nodes of the tree.

Another notion of regularity (for words)

A finite monoid M consists of a finite set S equipped with a binary
multiplication operation, which is associative, and a neutral element.

A monoid homomorphism is a function between underlying sets of
monoids, that preserves the multiplication operation.

A language L ⊆ Σ* is recognized by a monoid homomorphism iff

 Σ* M

{Yes, No}

h

L f

where M is a
finite monoid
and f is some
function that
specifies the
“accepting set” of
M

Another notion of regularity (for words)

The syntactic monoid of a language L is the target of a surjective monoid homomorphism h,
such that it recognizes L and the following commutes:

Every regular language has an effectively presentable syntactic monoid.

Theorem

A language of finite words L over a finite alphabet Σ is regular iff it is
recognized by a finite monoid homomorphism.

Σ* M

 N

h

g
f

For every surjective
homomorphism that recognises L,
there is a unique surjective
homomorphism that extends it to
h.

A natural question

MSO = regular (word) languages = finite monoids

A natural question

MSO = regular (word) languages = finite monoids

What about strict fragments of MSO? Is it possible to obtain similar
characterisations for less powerful logics?

A natural question

MSO = regular (word) languages = finite monoids

What about strict fragments of MSO? Is it possible to obtain similar
characterisations for less powerful logics?

Given a fragment F of MSO, is the following decidable?

Input: A regular language L
Question: Is L definable in F?

Positive answers

Over finite words, many positive answers.

Positive answers

Over finite words, many positive answers.

Theorem (Schützenberger (1965))

First Order Logic [<] = star-free regular languages = Aperiodic monoids
(aλ = aλ+1)

Positive answers

Over finite words, many positive answers.

Theorem (Schützenberger (1965))

First Order Logic [<] = star-free regular languages = Aperiodic monoids
(aλ = aλ+1)

Theorem (Simon (1975))

Boolean combination of Σ1 = piecewise testable languages= J-trivial
monoids (MaM = Ma’M → a = a’)

Positive answers

Over finite words, many positive answers.

Theorem (Schützenberger (1965))

First Order Logic [<] = star-free regular languages = Aperiodic monoids
(aλ = aλ+1)

Theorem (Simon (1975))

Boolean combination of Σ1 = piecewise testable languages= J-trivial
monoids (MaM = Ma’M → a = a’)

Theorem (Pin & Weil (1997))

FO[<] with two variables = DA monoids ((ab)λ= (ab)λ a(ab)λ)

Why is this effective?

The previous characterisations all yielded algorithms to decide the
definability in the given logic. The algorithms works this way:

1. Take an arbitrary representation of the language (regular
expressions, MSO, automata, …).

2. Transform the representation of the language in a finite monoid.
3. Compute the syntactic monoid of the language.
4. Check if the syntactic monoid satisfies the equation specified in the

theorem.

What about tree languages?

How can one approach this problem for trees?

First definitions and approaches: Thomas (1984, 1987).

In the following, finite and infinite trees will be mixed without a lot of
precision.

Logics for trees

Thomas identifies three “fragment” of MSO over trees:

● Monadic Antichain Logic: set quantification limited to
incomparable nodes wrt <.

● Monadic Chain Logic: set quantification limited to comparable
nodes wrt <.

● FO/Monadic Path logic: quantification limited to nodes/paths.

Aperiodicity for trees

A context is a tree with exactly one special constant instead of a leaf (or
of an infinite subtree, if we are in the case of infinite trees).

Given a finite alphabet Σ, the set SΣ of all the contexts obtainable from Σ
is a monoid with “tree concatenation” as the multiplication operation.

Aperiodicity for trees

A context is a tree with exactly one special constant instead of a leaf (or
of an infinite subtree, if we are in the case of infinite trees).

Given a finite alphabet Σ, the set SΣ of all the contexts obtainable from Σ
is a monoid with “tree concatenation” as the multiplication operation.

A tree language T is aperiodic if for every element a of its syntactic
monoid it holds aλ = aλ+1.

Monadic Antichain Logic = MSO

The definability problem for Antichain Logic is trivial, because
Potthoff & Thomas (1993) show that

Monadic Antichain Logic = MSO

over trees.

Monadic Chain Logic

Chain Logic is a very well studied logic over trees. What is known:

Monadic Chain Logic

Chain Logic is a very well studied logic over trees. What is known:

1. It is incomparable with aperiodicity.

Monadic Chain Logic

Chain Logic is a very well studied logic over trees. What is known:

1. It is incomparable with aperiodicity.
2. There are many different modal logics effectively equivalent to it.

Monadic Chain Logic

Chain Logic is a very well studied logic over trees. What is known:

1. It is incomparable with aperiodicity.
2. There are many different modal logics effectively equivalent to it.
3. Two recent (2024) automaton-based characterisations.

Monadic Chain Logic

Chain Logic is a very well studied logic over trees. What is known:

1. It is incomparable with aperiodicity.
2. There are many different modal logics effectively equivalent to it.
3. Two recent (2024) automaton-based characterisations.

No clue about an algebraic characterisation. A conjecture (Bojanczyk,
2004).

First Order Logic

What is known:

First Order Logic

What is known:

1. Thomas (1984) shows that every FO-definable tree language is
aperiodic. Heuter (1991) shows that there is an aperiodic language
that is not FO-definable.

First Order Logic

What is known:

1. Thomas (1984) shows that every FO-definable tree language is
aperiodic. Heuter (1991) shows that there is an aperiodic language
that is not FO-definable.

2. There are many different modal logics effectively equivalent to it.

First Order Logic

What is known:

1. Thomas (1984) shows that every FO-definable tree language is
aperiodic. Heuter (1991) shows that there is an aperiodic language
that is not FO-definable.

2. There are many different modal logics effectively equivalent to it.
3. There are two automaton-based characterisations (this work).

Again, no clue about an algebraic characterisations, not even a
conjecture.

Side problem

Chain Logic and FO are very close. Can one at least decide if a
Chain-definable tree language is FO-definable?

Side problem

Chain Logic and FO are very close. Can one at least decide if a
Chain-definable tree language is FO-definable?

The answer is tricky and currently unknown. A natural conjecture, i.e.,

Chain Logic ∩ Aperiodic = FO

was proved false by Potthoff (1995).

Side problem

Chain Logic and FO are very close. Can one at least decide if a
Chain-definable tree language is FO-definable?

The answer is tricky and currently unknown. A natural conjecture, i.e.,

Chain Logic ∩ Aperiodic = FO
was proved false by Potthoff (1995).

Solving this problem would reduce the FO-definability problem to the
Chain Logic-definability.

Other directions

Many other algebraic frameworks were pursued after Thomas. The two
most important ones are:

1. preclones (Esik & Weil, 2005)
2. forest algebras (Bojanczyk & Walukiewicz, 2008)

In both these formalisms (2009, 2012) a non-effective characterisation
of FO-definability is obtained. Again, no insight about an effective
characterisation.

Positive answers

There are some positive results. For the following logics, the definability
problem over trees is decidable:

● temporal logics EX, EF, EX+EF, EF + F ←.
● Boolean combinations of Σ1 formulas.
● Δ2.
● FO[S1,...Sk].
● FO[<] with two variables.

A different approach?

What’s missing for regular tree languages? A strong algebraic
framework.

A different approach?

What’s missing for regular tree languages? A strong algebraic
framework. This is even more true for infinite trees.

A different approach?

What’s missing for regular tree languages? A strong algebraic
framework. This is even more true for infinite trees.

One could argue that solving the definability problem means to
understand deeply a language class.

A different approach?

What’s missing for regular tree languages? A strong algebraic
framework. This is even more true for infinite trees.

One could argue that solving the definability problem means to
understand deeply a language class.

Is there another way to gain a decent understanding of a language
class?

What about automata?

Automaton-based characterisations can help in getting a good
understanding of a logic over certain structures, even without solving
the definability problem.

What about automata?

Automaton-based characterisations can help in getting a good
understanding of a logic over certain structures, even without solving
the definability problem.

Prominent example: automaton for μ-calculus by Janin &
Walukiewicz (1996).

What about automata?

Automaton-based characterisations can help in getting a good
understanding of a logic over certain structures, even without solving
the definability problem.

Prominent example: automaton for μ-calculus by Janin &
Walukiewicz (1996).

Recent advances: automata for Monadic Path Logic and Monadic
Chain Logic (Bozzelli, Benerecetti, Mogavero & Peron, 2024).

Automata for FO over trees

Two past efforts:

Automata for FO over trees

Two past efforts:

1. M. Bojanczyk (2004) proved the equivalence over finite binary trees of FO
with successors and order to a cascade product of a specific deterministic
automaton.

Automata for FO over trees

Two past efforts:

1. M. Bojanczyk (2004) proved the equivalence over finite binary trees of FO
with successors and order to a cascade product of a specific deterministic
automaton.

2. C. Ford (2019) introduced a class of automaton (let’s call it FordAuto)
translatable into FO with order. Did not prove the other direction.

Our work

Main result:

We obtained two automaton-based characterisations of FO
with ≤ over infinite trees.

Our work

Main result:

We obtained two automaton-based characterisations of FO
with ≤ over infinite trees.

In detail:

1. we investigated two branching-time temporal logics already shown
equivalent to FO over infinite trees;

Our work

Main result:

We obtained two automaton-based characterisations of FO
with ≤ over infinite trees.

In detail:

1. we investigated two branching-time temporal logics already shown
equivalent to FO over infinite trees;

2. we found two automaton classes effectively equivalent to the temporal logics,
and consequently to FO;

Our work

Main result:

We obtained two automaton-based characterisations of FO
with ≤ over infinite trees.

In detail:

1. we investigated two branching-time temporal logics already shown
equivalent to FO over infinite trees;

2. we found two automaton classes effectively equivalent to the temporal logics,
and consequently to FO;

3. from the automaton-based characterisations, we got normal forms for the
temporal logics and gained insight into the behaviour of FO over infinite
trees.

Infinite trees

The trees we consider are infinite, unranked and unordered.

Infinite trees

The trees we consider are infinite, unranked and unordered.

❖ Infinite: every maximal path is infinite (no leaves);

Infinite trees

The trees we consider are infinite, unranked and unordered.

❖ Infinite: every maximal path is infinite (no leaves);
❖ Unranked: there is no bound (apart from finiteness) on the number

of successors of a node;

Infinite trees

The trees we consider are infinite, unranked and unordered.

❖ Infinite: every maximal path is infinite (no leaves);
❖ Unranked: there is no bound (apart from finiteness) on the number

of successors of a node;
❖ Unordered: the order of the successors of a given node is irrelevant.

First Order Logic over infinite trees

There are many variants for FO over trees, depending on the
predicates one allows in the signature. We chose to use = and <, but
not the i-th successor predicates.

First Order Logic over infinite trees

There are many variants for FO over trees, depending on the
predicates one allows in the signature. We chose to use = and <, but
not the i-th successor predicates.

What FO can say

There are at least three
successors of a given node that
share the property P.

First Order Logic over infinite trees

There are many variants for FO over trees, depending on the
predicates one allows in the signature. We chose to use = and <, but
not the i-th successor predicates.

What FO can say

There are at least three
successors of a given node that
share the property P.

What FO can’t say

The third, fifth and eighth
successor of a given node share
the property P.

Polarized CTL with Past

The first Branching-time temporal logic we considered is Polarized CTL with past
(Schlingloff, 1992) and it is:

Polarized CTL with Past

The first Branching-time temporal logic we considered is Polarized CTL with past
(Schlingloff, 1992) and it is:

● equivalent to FO over trees;

Polarized CTL with Past

The first Branching-time temporal logic we considered is Polarized CTL with past
(Schlingloff, 1992) and it is:

● equivalent to FO over trees;
● a fragment of counting CTL with past.

φ ≔ p | ¬φ | φ ∨ φ | Dnφ | ΕΧφ | ΕφUφ | EφRφ | Yφ | φSφ

Polarized CTL with Past

The first Branching-time temporal logic we considered is Polarized CTL with past
(Schlingloff, 1992) and it is:

● equivalent to FO over trees;
● a fragment of counting CTL with past.

φ ≔ p | ¬φ | φ ∨ φ | Dnφ | ΕΧφ | ΕφUφ | EφRφ | Yφ | φSφ

What Polarized CTL can say

There is a branch on which (s ∨
pUq)Ur holds.

Polarized CTL with Past

The first Branching-time temporal logic we considered is Polarized CTL with past
(Schlingloff, 1992) and it is:

● equivalent to FO over trees;
● a fragment of counting CTL with past.

φ ≔ p | ¬φ | φ ∨ φ | Dnφ | ΕΧφ | ΕφUφ | EφRφ | Yφ | φSφ

What Polarized CTL can’t say

There is a branch where p holds
globally.

What Polarized CTL can say

There is a branch on which (s ∨
pUq)Ur holds.

Connections to modal μ-calculus

Syntactic restriction of Polarized CTL: similar to Propositional Dynamic Logic.

Connections to modal μ-calculus

Syntactic restriction of Polarized CTL: similar to Propositional Dynamic Logic.

Carreiro & Venema (2014) show that PDL is a fragment of the modal
mu-calculus in which existential modalities can only be paired with
least-fixpoint operators, and universal modalities can only be
paired with greatest fixpoint operators.

Connections to modal μ-calculus

Syntactic restriction of Polarized CTL: similar to Propositional Dynamic Logic.

Polarized CTL is a proper fragment of PDL.

Open problem: what is the fragment of μ-calculus coinciding with Polarized CTL?

Carreiro & Venema (2014) show that PDL is a fragment of the modal
mu-calculus in which existential modalities can only be paired with
least-fixpoint operators, and universal modalities can only be
paired with greatest fixpoint operators.

CTL* over finite paths

The second branching-time temporal logic is syntactically identical to the
classic counting CTL* but:

CTL* over finite paths

The second branching-time temporal logic is syntactically identical to the
classic counting CTL* but:

● the usual path quantifiers refer only to non-empty finite paths;

CTL* over finite paths

The second branching-time temporal logic is syntactically identical to the
classic counting CTL* but:

● the usual path quantifiers refer only to non-empty finite paths;
● it is equivalent to FO over trees, too.

φ ≔ p | ¬φ | φ ∨ φ | Dnφ | Εψ
ψ ≔ φ | ¬ψ | ψ ∨ ψ | Χψ | ψUψ

Finite path quantification

The semantic restriction of CTL* over finite paths trivializes many
formulas.

Finite path quantification

The semantic restriction of CTL* over finite paths trivializes many
formulas. The simplest examples are:

EẊφ ↔ T AX φ ↔ ⊥

where Ẋ is the weak version of the X operator.

Automaton-based characterisations

We proved that two automaton classes are equivalent to Polarized CTL and
CTL* over finite paths, and consequently to FO.

The two automaton classes share many similarities, since they are both:

Automaton-based characterisations

We proved that two automaton classes are equivalent to Polarized CTL and
CTL* over finite paths, and consequently to FO.

The two automaton classes share many similarities, since they are both:

❖ Alternating: they mix nondeterminism and universal branching;

Automaton-based characterisations

We proved that two automaton classes are equivalent to Polarized CTL and
CTL* over finite paths, and consequently to FO.

The two automaton classes share many similarities, since they are both:

❖ Alternating: they mix nondeterminism and universal branching;
❖ Weak: they can switch a finite number of times between accepting and

rejecting states;

Automaton-based characterisations

We proved that two automaton classes are equivalent to Polarized CTL and
CTL* over finite paths, and consequently to FO.

The two automaton classes share many similarities, since they are both:

❖ Alternating: they mix nondeterminism and universal branching;
❖ Weak: they can switch a finite number of times between accepting and

rejecting states;
❖ Hesitant: the state-set is partitioned in a way that simulates the difference

between existential and universal path quantifiers.

Hesitant restriction: Existential components

The automaton enters the
existential component

Hesitant restriction: Existential components

The automaton enters the
existential component

The automaton
always picks
exactly one
successor in the
component and
send it to one child
of the current
input.

Hesitant restriction: Existential components

The automaton enters the
existential component

The automaton can send
transitions to components of
lower order

The automaton
always picks
exactly one
successor in the
component and
send it to one child
of the current
input.

Hesitant restriction: Universal components

The automaton
enters the universal
component

Hesitant restriction: Universal components

The automaton
enters the universal
component

The automaton can pick many
successors in the component, even
all of them, and then send them to
all the children of the current input.

Hesitant restriction: Universal components

The automaton
enters the universal
component

The automaton can pick many
successors in the component, even
all of them, and then send them to
all the children of the current input.

The automaton send transitions
to components of lower order.

Two-way vs One-way head movements

Most interesting difference: head movement.

Two-way vs One-way head movements

Most interesting difference: head movement.

The automaton class modeled after Polarized CTL allows two-way
head movements along the input tree; the other does not.
Why is it interesting?

Two-way vs One-way head movements

Most interesting difference: head movement.

The automaton class modeled after Polarized CTL allows two-way
head movements along the input tree; the other does not.
Why is it interesting?

 Unlike the case of word automata, two-way head
movements increase expressiveness!

Two-way vs One-way head movements

Most interesting difference: head movement.

The automaton class modeled after Polarized CTL allows two-way
head movements along the input tree; the other does not.
Why is it interesting?

One has to impose different restrictions on the state set to obtain
equivalence with FO.

Unlike the case of word automata, two-way head
movements increase expressiveness!

Two-way restriction

If two-way head movements are available, a very simple restriction is
needed to obtain FO expressiveness.

Two-way restriction

If two-way head movements are available, a very simple restriction is
needed to obtain FO expressiveness.

State-set can be partitioned in linearly ordered singletons.
Every singleton must be of an “hesitant” type.

Two-way restriction

If two-way head movements are available, a very simple restriction is
needed to obtain FO expressiveness.

Similar to alternating automata for FO over words.

State-set can be partitioned in linearly ordered singletons.
Every singleton must be of an “hesitant” type.

Conjecture

Call the automaton-class modeled after Polarized CTL: PolarizedAuto. We
proved:

Theorem

2-way PolarizedAuto is strictly more expressive than 1-way
PolarizedAuto.

Conjecture

Call the automaton-class modeled after Polarized CTL: PolarizedAuto. We
proved:

We conjecture that the FordAuto is strictly less expressive than FO, because of
the following.

Theorem

2-way PolarizedAuto is strictly more expressive than 1-way
PolarizedAuto.

Conjecture

FordAuto is equivalent to 1-way PolarizedAuto.

One-way restriction

To regain FO expressiveness with one-way head movements: more
work needed.

One-way restriction

To regain FO expressiveness with one-way head movements: more
work needed.

State-set can be partitioned but no restriction on the size of the
components.

One-way restriction

To regain FO expressiveness with one-way head movements: more
work needed.

State-set can be partitioned but no restriction on the size of the
components.

The first restriction is:

Every component, seen as a word automaton, is
counter-free.

One-way restriction

To regain FO expressiveness with one-way head movements: more
work needed.

State-set can be partitioned but no restriction on the size of the
components.

The first restriction is:

Counter-free automata are the automata equivalent to FO over words.

Every component, seen as a word automaton, is
counter-free.

One-way restriction

The counter-free restriction is not enough.

One-way restriction

The counter-free restriction is not enough.

Second restriction:

The components are equivalent to a SafetyLTL formula
when universal and to a CoSafetyLTL formula when
existential.

One-way restriction

The counter-free restriction is not enough.

Second restriction:

SafetyLTL = Safety fragment of FO over words.

CoSafetyLTL = CoSafety fragment of FO over words.

The components are equivalent to a SafetyLTL formula
when universal and to a CoSafetyLTL formula when
existential.

Results

Automaton-class modeled after Polarized CTL: PolarizedAuto.

Automaton-class modeled after CTL* over finite paths: CTL*Auto.

Results

Automaton-class modeled after Polarized CTL: PolarizedAuto.

Automaton-class modeled after CTL* over finite paths: CTL*Auto.

 Polarized CTL

 CTL* over finite paths

↔

↔
FO

Results

Automaton-class modeled after Polarized CTL: PolarizedAuto.

Automaton-class modeled after CTL* over finite paths: CTL*Auto.

 2-way PolarizedAuto ↔ Polarized CTL

 CTL* over finite paths

↔

↔
FO

Results

Automaton-class modeled after Polarized CTL: PolarizedAuto.

Automaton-class modeled after CTL* over finite paths: CTL*Auto.

 2-way PolarizedAuto ↔ Polarized CTL

 1-way CTL*Auto ↔ CTL* over finite paths

↔

↔
FO

Normal forms and insight into FO over infinite trees

The two automaton-based characterisations of FO we obtained offered as a by-product two normal
forms for Polarized CTL:

φ ≔ p | ¬φ | φ ∨ φ | Dnφ | ΕFψ
ψ ≔ φ | ψ ∧ ψ | ψ ∨ ψ | Yψ | ψSψ

and CTL* over finite paths:

φ ≔ p | ¬φ | φ ∨ φ | Dnφ | Εψ
ψ ≔ φ | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψUψ

Normal forms and insight into FO over infinite trees

The two automaton-based characterisations of FO we obtained offered as a by-product two normal
forms for Polarized CTL:

φ ≔ p | ¬φ | φ ∨ φ | Dnφ | ΕFψ
ψ ≔ φ | ψ ∧ ψ | ψ ∨ ψ | Yψ | ψSψ

and CTL* over finite paths:

φ ≔ p | ¬φ | φ ∨ φ | Dnφ | Εψ
ψ ≔ φ | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψUψ

Take-away messagge

Over infinite trees, when FO predicates existentially over a path, it can only
express co-safety properties, while when it predicates over all paths, it can
only express safety properties.

Conclusions

We obtained:

● two automaton-based characterisations for FO over
infinite trees

● normal forms for two temporal logics equivalent to FO
● insight into the behaviour of FO over infinite trees

Open problems: Definability problem

What about the definability problem?

Open problems: Definability problem

What about the definability problem?

Our work does not provide an immediate advancement.

However, …

Open problems: Definability problem

What about the definability problem?

Our work does not provide an immediate advancement.

However, …

Over finite trees, Bojanczyk (2009) proves that the definability
problem for the logic

φ ≔ p | ¬φ | φ ∨ φ | ΕFφ | TSφ

is decidable.

Open problems: Definability problem

What about the definability problem?

Our work does not provide an immediate advancement.

However, …

Over finite trees, Bojanczyk (2009) proves that the definability
problem for the logic

φ ≔ p | ¬φ | φ ∨ φ | ΕFφ | TSφ

is decidable.

Very similar to normal form of Polarized CTL!

Idea: Investigate definability problem of Polarized CTL over finite
trees.

Open problems: Automata simulation

2-way PolarizedAuto and 1-way CTL*Auto are equivalent by the
equivalence of temporal logics.

Interesting problem: Find direct simulation of each automaton by the
other.

Open problems: Full CTL with past expressiveness

 Schlingloff (1992): Polarized CTL with past = FO

Open problems: Full CTL with past expressiveness

 Schlingloff (1992): Polarized CTL with past = FO

Moller & Rabinovich (2003): CTL* = Monadic Path Logic

Open problems: Full CTL with past expressiveness

 Schlingloff (1992): Polarized CTL with past = FO

Full CTL with past = ?

Moller & Rabinovich (2003): CTL* = Monadic Path Logic

Open problems: Full CTL with past expressiveness

 Schlingloff (1992): Polarized CTL with past = FO

Full CTL with past = ?

Moller & Rabinovich (2003): CTL* = Monadic Path Logic

Polarized CTL with past < Full CTL with past < CTL*

Thank you
for your attention!

