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Regular = Monadic Second Order Logic

One of the most fundamental results in language theory connects regular word 
languages and logic.

The same is true when one replaces word languages with tree languages.

Many generalizations: infinite words, infinite trees, even graphs of bounded treewidth! 

Theorem (Büchi, Elgot, Trakhtenbrot, late 1950s)

A language of finite words L over a finite alphabet Σ is regular iff it is 
definable in Monadic Second Order Logic.

Theorem (Doner, Thatcher & Wright, mid 1960s)

A language of finite trees L over a finite alphabet Σ is regular iff it is 
definable in Monadic Second Order Logic.



Monadic Second Order Logic

Monadic Second Order Logic (MSO) is Second Order Logic  in which 
second order quantification is limited to monadic predicates, i.e., sets. 

Over words, MSO can quantify over sets of “positions” of the word. 
Over trees, it can quantify over sets of nodes of the tree.



Another notion of regularity (for words)

A finite monoid M consists of a finite set S equipped with a binary 
multiplication operation, which is associative, and a neutral element. 

A monoid homomorphism is a function between underlying sets of 
monoids, that preserves the multiplication operation.

A language L ⊆ Σ* is recognized by a monoid homomorphism iff

 Σ*                             M                          

{Yes, No}

h

L f

where M is a 
finite monoid 
and f is some 
function that 
specifies the 
“accepting set” of 
M



Another notion of regularity (for words) 

The syntactic monoid of a language L is the target of a surjective monoid homomorphism h, 
such that it recognizes L and the following commutes:

Every regular language has an effectively presentable syntactic monoid.   

Theorem 

A language of finite words L over a finite alphabet Σ is regular iff it is 
recognized by a finite monoid homomorphism.

Σ*                              M

                                   N 

h

g
f

For every surjective 
homomorphism that recognises L, 
there is a unique surjective 
homomorphism that extends it to 
h.
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A natural question

MSO = regular (word) languages = finite monoids

What about strict fragments of MSO? Is it possible to obtain similar 
characterisations for less powerful logics? 

Given a fragment F  of MSO, is the following decidable?

Input: A regular language L
Question: Is L definable in F? 
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Positive answers

Over finite words, many positive answers. 

Theorem (Schützenberger (1965))

First Order Logic [<] = star-free regular languages = Aperiodic monoids 
(aλ = aλ+1)

Theorem (Simon (1975))

Boolean combination of Σ1 = piecewise testable languages= J-trivial 
monoids (MaM = Ma’M → a = a’)

Theorem (Pin & Weil (1997))

FO[<] with two variables = DA monoids ((ab)λ= (ab)λ a(ab)λ)



Why is this effective?

The previous characterisations all yielded algorithms to decide the 
definability in the given logic. The algorithms works this way:

1. Take an arbitrary representation of the language (regular 
expressions, MSO, automata, …).

2. Transform the representation of the language in a finite monoid. 
3. Compute the syntactic monoid of the language. 
4. Check if the syntactic monoid satisfies the equation specified in the 

theorem. 



What about tree languages?

How can one approach this problem for trees? 

First definitions and approaches: Thomas (1984, 1987).

In the following, finite and infinite trees will be mixed without a lot of 
precision.



Logics for trees

Thomas identifies three “fragment” of MSO over trees:

● Monadic Antichain Logic: set quantification limited to 
incomparable nodes wrt <.

● Monadic Chain Logic: set quantification limited to comparable 
nodes wrt <.

● FO/Monadic Path logic: quantification limited to nodes/paths.
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A context is a tree with exactly one special constant instead of a leaf (or 
of an infinite subtree, if we are in the case of infinite trees). 

Given a finite alphabet Σ, the set SΣ of all the contexts obtainable from Σ 
is a monoid with “tree concatenation” as the multiplication operation.      



Aperiodicity for trees

A context is a tree with exactly one special constant instead of a leaf (or 
of an infinite subtree, if we are in the case of infinite trees). 

Given a finite alphabet Σ, the set SΣ of all the contexts obtainable from Σ 
is a monoid with “tree concatenation” as the multiplication operation.

A tree language T is aperiodic if for every element a of its syntactic 
monoid it holds aλ = aλ+1.



Monadic Antichain Logic = MSO

The definability problem for Antichain Logic is trivial, because 
Potthoff & Thomas (1993) show that 

Monadic Antichain Logic = MSO 

over trees.
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Monadic Chain Logic 

Chain Logic is a very well studied logic over trees. What is known:

1. It is incomparable with aperiodicity.
2. There are many different modal logics effectively equivalent to it.
3. Two recent (2024) automaton-based characterisations.

No clue about an algebraic characterisation. A conjecture (Bojanczyk, 
2004).
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First Order Logic

What is known:

1. Thomas (1984) shows that every FO-definable tree language is 
aperiodic. Heuter (1991) shows that there is an aperiodic language 
that is not FO-definable.

2. There are many different modal logics effectively equivalent to it.
3. There are two automaton-based characterisations (this work).

Again, no clue about an algebraic characterisations, not even a 
conjecture.  
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Side problem 

Chain Logic and FO are very close. Can one at least decide if a 
Chain-definable tree language is FO-definable? 

The answer is tricky and currently unknown. A natural conjecture, i.e., 

Chain Logic ∩ Aperiodic = FO
was proved false by Potthoff (1995). 

Solving this problem would reduce the FO-definability problem to the 
Chain Logic-definability.



Other directions

Many other algebraic frameworks were pursued after Thomas. The two 
most important ones are:

1. preclones (Esik & Weil, 2005)
2. forest algebras (Bojanczyk & Walukiewicz, 2008)

In both these formalisms (2009, 2012) a non-effective characterisation 
of FO-definability is obtained. Again, no insight about an effective 
characterisation.



Positive answers

There are some positive results. For the following logics, the definability 
problem over trees is decidable:

● temporal logics EX, EF, EX+EF, EF + F ←.
● Boolean combinations of Σ1 formulas.
● Δ2.
● FO[S1,...Sk].
● FO[<] with two variables.
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A different approach?

What’s missing for regular tree languages? A strong algebraic 
framework. This is even more true for infinite trees. 

One could argue that solving the definability problem means to 
understand deeply a language class.

Is there another way to gain a decent understanding of a language 
class?
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What about automata?

Automaton-based characterisations can help in getting a good 
understanding of a logic over certain structures, even without solving 
the definability problem.

Prominent example: automaton for μ-calculus by Janin & 
Walukiewicz (1996).

Recent advances: automata for Monadic Path Logic and Monadic 
Chain Logic (Bozzelli, Benerecetti, Mogavero & Peron, 2024).
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Automata for FO over trees

Two past efforts:

1. M. Bojanczyk (2004) proved the equivalence over finite binary trees of FO 
with successors and order to a cascade product of a specific deterministic 
automaton.

2. C. Ford (2019) introduced a class of automaton (let’s call it FordAuto) 
translatable into FO with order. Did not prove the other direction.
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Our work

Main result:

We obtained two automaton-based characterisations of FO 
with ≤ over infinite trees.

In detail:

1. we investigated two branching-time temporal logics already shown 
equivalent to FO over infinite trees;

2. we found two automaton classes effectively equivalent to the temporal logics, 
and consequently to FO;

3. from the automaton-based characterisations, we got normal forms for the 
temporal logics and gained insight into the behaviour of FO over infinite 
trees. 
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Infinite trees

The trees we consider are infinite, unranked and unordered.

❖ Infinite: every maximal path is infinite (no leaves);
❖ Unranked: there is no bound (apart from finiteness) on the number 

of successors of a node;
❖ Unordered: the order of the successors of a given node is irrelevant. 
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First Order Logic over infinite trees 

There are many variants for FO over trees, depending on the 
predicates one allows in the signature. We chose to use = and <, but 
not the i-th successor predicates.

What FO can say

There are at least three 
successors of a given node that 
share the property P.

What FO can’t say

The third, fifth and eighth 
successor of a given node share 
the property P.
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Polarized CTL with Past

The first Branching-time temporal logic we considered is Polarized CTL with past 
(Schlingloff, 1992) and it is:

●   equivalent to FO over trees;
● a fragment of counting CTL with past.  

φ ≔ p | ¬φ | φ ∨ φ | Dnφ | ΕΧφ | ΕφUφ | EφRφ | Yφ | φSφ 

What Polarized CTL can’t say

There is a branch where p holds 
globally.  

What Polarized CTL can say

There is a branch on which (s ∨ 
pUq)Ur holds.
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Connections to modal μ-calculus

Syntactic restriction of Polarized CTL: similar to Propositional Dynamic Logic.

Polarized CTL is a proper fragment of PDL.

Open problem: what is the fragment of μ-calculus coinciding with Polarized CTL?

Carreiro & Venema (2014) show that PDL is a fragment of the modal 
mu-calculus in which existential modalities can only be paired with 
least-fixpoint operators, and universal modalities can only be 
paired with greatest fixpoint operators.
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CTL* over finite paths

The second branching-time temporal logic is syntactically identical to the 
classic counting CTL* but:

● the usual path quantifiers refer only to non-empty finite paths;
● it is equivalent to FO over trees, too. 

φ ≔ p | ¬φ | φ ∨ φ | Dnφ | Εψ
ψ ≔ φ | ¬ψ | ψ ∨ ψ | Χψ | ψUψ
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Finite path quantification

The semantic restriction of CTL* over finite paths trivializes many 
formulas. The simplest examples are:

 

EẊφ ↔ T               AX φ ↔ ⊥

where Ẋ is the weak version  of the X operator. 
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Automaton-based characterisations

We proved that two automaton classes are equivalent to Polarized CTL and 
CTL* over finite paths, and consequently to FO. 

The two automaton classes share many similarities, since they are both:

❖ Alternating: they mix nondeterminism and universal branching;
❖ Weak: they can switch a finite number of times between accepting and 

rejecting states;
❖ Hesitant: the state-set is partitioned in a way that simulates the difference 

between existential and universal path quantifiers. 
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input.
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Hesitant restriction: Universal components

The automaton 
enters the universal 
component

The automaton can pick many 
successors in the component, even 
all of them, and then send them to 
all the children of the current input.

The automaton send transitions 
to components of lower order. 
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Two-way vs One-way head movements

Most interesting difference: head movement.

The automaton class modeled after Polarized CTL allows two-way 
head movements along the input tree; the other does not. 
Why is it interesting?

One has to impose different restrictions on the state set to obtain 
equivalence with FO.  

Unlike the case of word automata, two-way head 
movements increase expressiveness! 
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Two-way restriction

If two-way head movements are available, a very simple restriction is 
needed to obtain FO expressiveness. 

Similar to alternating automata for FO over words.

State-set can be partitioned in linearly ordered singletons. 
Every singleton must be of an “hesitant” type.
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proved:

Theorem 
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Conjecture

Call the automaton-class modeled after Polarized CTL: PolarizedAuto. We 
proved:

We conjecture that the FordAuto is strictly less expressive than FO, because of 
the following. 

Theorem 

2-way PolarizedAuto is strictly more expressive than 1-way 
PolarizedAuto.

Conjecture

FordAuto is equivalent to 1-way PolarizedAuto.
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One-way restriction

To regain FO expressiveness with one-way head movements: more   
work needed. 

State-set can be partitioned but no restriction on the size of the 
components. 

The first restriction is:

 

Counter-free automata are the automata equivalent to FO over words.

Every component, seen as a word automaton, is 
counter-free.
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One-way restriction 

The counter-free restriction is not enough.

Second restriction:

SafetyLTL = Safety fragment of FO over words.

CoSafetyLTL  = CoSafety fragment of FO over words. 

The components are equivalent to a SafetyLTL formula 
when universal and to a CoSafetyLTL formula when 
existential. 
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Results

Automaton-class modeled after Polarized CTL: PolarizedAuto.

Automaton-class modeled after CTL* over finite paths: CTL*Auto.

            2-way PolarizedAuto ↔ Polarized CTL 

         1-way CTL*Auto ↔  CTL* over finite paths 

↔

↔
FO



Normal forms and insight into FO over infinite trees

The two automaton-based characterisations of FO we obtained offered as a by-product two normal 
forms for Polarized CTL:
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Normal forms and insight into FO over infinite trees

The two automaton-based characterisations of FO we obtained offered as a by-product two normal 
forms for Polarized CTL:

φ ≔ p | ¬φ | φ ∨ φ | Dnφ | ΕFψ
ψ ≔ φ | ψ ∧ ψ | ψ ∨ ψ | Yψ | ψSψ

and CTL* over finite paths:

φ ≔ p | ¬φ | φ ∨ φ | Dnφ | Εψ
ψ ≔ φ | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψUψ

Take-away messagge

Over infinite trees, when FO predicates existentially over a path, it can only 
express co-safety properties, while when it predicates over all paths, it can 
only express safety properties.



Conclusions 

We obtained:

● two automaton-based characterisations for FO over 
infinite trees

● normal forms for two temporal logics equivalent to FO
● insight into the behaviour of FO over infinite trees
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Open problems: Definability problem

What about the definability problem?

Our work does not provide an immediate advancement. 

However, …

Over finite trees, Bojanczyk (2009)  proves that the definability 
problem for the logic

φ ≔ p | ¬φ | φ ∨ φ | ΕFφ | TSφ

is decidable.

Very similar to normal form of Polarized CTL!

 

Idea: Investigate definability problem of Polarized CTL over finite 
trees.



Open problems: Automata simulation

2-way PolarizedAuto and 1-way CTL*Auto are equivalent by the 
equivalence of temporal logics. 

Interesting problem: Find direct simulation of each automaton by the 
other.
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Open problems: Full CTL with past expressiveness

 Schlingloff (1992): Polarized CTL with past = FO

Full CTL with past = ?

Moller & Rabinovich (2003): CTL* = Monadic Path Logic 

Polarized CTL with past < Full CTL with past < CTL*



Thank you
for your attention!


